Monthly Archives: December 2024

Newtonmas and the Gift of a Physics Background

This week, people all over the world celebrated the birth of someone whose universally attractive ideas spread around the globe. I’m talking, of course about Isaac Newton.

For Newtonmas this year, I’ve been pondering another aspect of Newton’s life. There’s a story you might have heard that physicists can do basically anything, with many people going from a career in physics to a job in a variety of other industries. It’s something I’ve been trying to make happen for myself. In a sense, this story goes back to the very beginning, when Newton quit his academic job to work at the Royal Mint.

On the surface, there are a lot of parallels. At the Mint, a big part of Newton’s job was to combat counterfeiting and “clipping”, where people would carve small bits of silver off of coins. This is absolutely a type of job ex-physicists do today, at least in broad strokes. Working as Data Scientists for financial institutions, people look for patterns in transactions that give evidence of fraud.

Digging deeper, though, the analogy falls apart a bit. Newton didn’t apply any cunning statistical techniques to hunt down counterfeiters. Instead, the stories that get told about his work there are basically detective stories. He hung out in bars to catch counterfeiter gossip and interviewed counterfeiters in prison, not exactly the kind of thing you’d hire a physicist to do these days. The rest of the role was administrative: setting up new mint locations and getting people to work overtime to replace the country’s currency. Newton’s role at the mint was less like an ex-physicist going into Data Science and more like Steven Chu as Secretary of Energy: someone with a prestigious academic career appointed to a prestigious government role.

If you’re looking for a patron saint of physicists who went to industry, Newton’s contemporary Robert Hooke may be a better bet. Unlike many other scientists of the era, Hooke wasn’t independently wealthy, and for a while he was kept quite busy working for the Royal Society. But a bit later he had another, larger source of income: working as a surveyor and architect, where he designed several of London’s iconic buildings. While Newton’s work at the Mint drew on his experience as a person of power and influence, working as an architect drew much more on skills directly linked to Hooke’s work as a scientist: understanding the interplay of forces in quantitative detail.

While Newton and Hooke’s time was an era of polymaths, in some sense the breadth of skills imparted by a physics education has grown. Physicists learn statistics (which barely existed in Newton’s time) programming (which did not exist at all) and a wider range of mathematical and physical models. Having a physics background isn’t the ideal way to go into industry (that would be having an industry background). But for those of us making the jump, it’s still a Newtonmas gift to be grateful for.

How Small Scales Can Matter for Large Scales

For a certain type of physicist, nothing matters more than finding the ultimate laws of nature for its tiniest building-blocks, the rules that govern quantum gravity and tell us where the other laws of physics come from. But because they know very little about those laws at this point, they can predict almost nothing about observations on the larger distance scales we can actually measure.

“Almost nothing” isn’t nothing, though. Theoretical physicists don’t know nature’s ultimate laws. But some things about them can be reasonably guessed. The ultimate laws should include a theory of quantum gravity. They should explain at least some of what we see in particle physics now, explaining why different particles have different masses in terms of a simpler theory. And they should “make sense”, respecting cause and effect, the laws of probability, and Einstein’s overall picture of space and time.

All of these are assumptions, of course. Further assumptions are needed to derive any testable consequences from them. But a few communities in theoretical physics are willing to take the plunge, and see what consequences their assumptions have.

First, there’s the Swampland. String theorists posit that the world has extra dimensions, which can be curled up in a variety of ways to hide from view, with different observable consequences depending on how the dimensions are curled up. This list of different observable consequences is referred to as the Landscape of possibilities. Based on that, some string theorists coined the term “Swampland” to represent an area outside the Landscape, containing observations that are incompatible with quantum gravity altogether, and tried to figure out what those observations would be.

In principle, the Swampland includes the work of all the other communities on this list, since a theory of quantum gravity ought to be consistent with other principles as well. In practice, people who use the term focus on consequences of gravity in particular. The earliest such ideas argued from thought experiments with black holes, finding results that seemed to demand that gravity be the weakest force for at least one type of particle. Later researchers would more frequently use string theory as an example, looking at what kinds of constructions people had been able to make in the Landscape to guess what might lie outside of it. They’ve used this to argue that dark energy might be temporary, and to try to figure out what traits new particles might have.

Second, I should mention naturalness. When talking about naturalness, people often use the analogy of a pen balanced on its tip. While possible in principle, it must have been set up almost perfectly, since any small imbalance would cause it to topple, and that perfection demands an explanation. Similarly, in particle physics, things like the mass of the Higgs boson and the strength of dark energy seem to be carefully balanced, so that a small change in how they were set up would lead to a much heavier Higgs boson or much stronger dark energy. The need for an explanation for the Higgs’ careful balance is why many physicists expected the Large Hadron Collider to discover additional new particles.

As I’ve argued before, this kind of argument rests on assumptions about the fundamental laws of physics. It assumes that the fundamental laws explain the mass of the Higgs, not merely by giving it an arbitrary number but by showing how that number comes from a non-arbitrary physical process. It also assumes that we understand well how physical processes like that work, and what kinds of numbers they can give. That’s why I think of naturalness as a type of argument, much like the Swampland, that uses the smallest scales to constrain larger ones.

Third is a host of constraints that usually go together: causality, unitarity, and positivity. Causality comes from cause and effect in a relativistic universe. Because two distant events can appear to happen in different orders depending on how fast you’re going, any way to send signals faster than light is also a way to send signals back in time, causing all of the paradoxes familiar from science fiction. Unitarity comes from quantum mechanics. If quantum calculations are supposed to give the probability of things happening, those probabilities should make sense as probabilities: for example, they should never go above one.

You might guess that almost any theory would satisfy these constraints. But if you extend a theory to the smallest scales, some theories that otherwise seem sensible end up failing this test. Actually linking things up takes other conjectures about the mathematical form theories can have, conjectures that seem more solid than the ones underlying Swampland and naturalness constraints but that still can’t be conclusively proven. If you trust the conjectures, you can derive restrictions, often called positivity constraints when they demand that some set of observations is positive. There has been a renaissance in this kind of research over the last few years, including arguments that certain speculative theories of gravity can’t actually work.

Which String Theorists Are You Complaining About?

Do string theorists have an unfair advantage? Do they have an easier time getting hired, for example?

In one of the perennial arguments about this on Twitter, Martin Bauer posted a bar chart of faculty hires in the US by sub-field. The chart was compiled by Erich Poppitz from data in the US particle physics rumor mill, a website where people post information about who gets hired where for the US’s quite small number of permanent theoretical particle physics positions at research universities and national labs. The data covers 1994 to 2017, and shows one year, 1999, when there were more string theorists hired than all other topics put together. The years around then also had many string theorists hired, but the proportion starts falling around the mid 2000’s…around when Lee Smolin wrote a book, The Trouble With Physics, arguing that string theorists had strong-armed their way into academic dominance. After that, the percentage of string theorists falls, oscillating between a tenth and a quarter of total hires.

Judging from that, you get the feeling that string theory’s critics are treating a temporary hiring fad as if it was a permanent fact. The late 1990’s were a time of high-profile developments in string theory that excited a lot of people. Later, other hiring fads dominated, often driven by experiments: I remember when the US decided to prioritize neutrino experiments and neutrino theorists had a much easier time getting hired, and there seem to be similar pushes now with gravitational waves, quantum computing, and AI.

Thinking about the situation in this way, though, ignores what many of the critics have in mind. That’s because the “string” column on that bar chart is not necessarily what people think of when they think of string theory.

If you look at the categories on Poppitz’s bar chart, you’ll notice something odd. “String” its itself a category. Another category, “lattice”, refers to lattice QCD, a method to find the dynamics of quarks numerically. The third category, though, is a combination of three things “ph/th/cosm”.

“Cosm” here refers to cosmology, another sub-field. “Ph” and “th” though aren’t really sub-fields. Instead, they’re arXiv categories, sections of the website arXiv.org where physicists post papers before they submit them to journals. The “ph” category is used for phenomenology, the type of theoretical physics where people try to propose models of the real world and make testable predictions. The “th” category is for “formal theory”, papers where theoretical physicists study the kinds of theories they use in more generality and develop new calculation methods, with insights that over time filter into “ph” work.

“String”, on the other hand, is not an arXiv category. When string theorists write papers, they’ll put them into “th” or “ph” or another relevant category (for example “gr-qc”, for general relativity and quantum cosmology). This means that when Poppitz distinguishes “ph/th/cosm” from “string”, he’s being subjective, using his own judgement to decide who counts as a string theorist.

So who counts as a string theorist? The simplest thing to do would be to check if their work uses strings. Failing that, they could use other tools of string theory and its close relatives, like Calabi-Yau manifolds, M-branes, and holography.

That might be what Poppitz was doing, but if he was, he was probably missing a lot of the people critics of string theory complain about. He even misses many people who describe themselves as string theorists. In an old post of mine I go through the talks at Strings, string theory’s big yearly conference, giving them finer-grained categories. The majority don’t use anything uniquely stringy.

Instead, I think critics of string theory have two kinds of things in mind.

First, most of the people who made their reputations on string theory are still in academia, and still widely respected. Some of them still work on string theory topics, but many now work on other things. Because they’re still widely respected, their interests have a substantial influence on the field. When one of them starts looking at connections between theories of two-dimensional materials, you get a whole afternoon of talks at Strings about theories of two-dimensional materials. Working on those topics probably makes it a bit easier to get a job, but also, many of the people working on them are students of these highly respected people, who just because of that have an easier time getting a job. If you’re a critic of string theory who thinks the founders of the field led physics astray, then you probably think they’re still leading physics astray even if they aren’t currently working on string theory.

Second, for many other people in physics, string theorists are their colleagues and friends. They’ll make fun of trends that seem overhyped and under-thought, like research on the black hole information paradox or the swampland, or hopes that a slightly tweaked version of supersymmetry will show up soon at the LHC. But they’ll happily use ideas developed in string theory when they prove handy, using supersymmetric theories to test new calculation techniques, string theory’s extra dimensions to inspire and ground new ideas for dark matter, or the math of strings themselves as interesting shortcuts to particle physics calculations. String theory is available as reference to these people in a way that other quantum gravity proposals aren’t. That’s partly due to familiarity and shared language (I remember a talk at Perimeter where string theorists wanted to learn from practitioners from another area and the discussion got bogged down by how they were using the word “dimension”), but partly due to skepticism of the various alternate approaches. Most people have some idea in their heads of deep problems with various proposals: screwing up relativity, making nonsense out of quantum mechanics, or over-interpreting on limited evidence. The most commonly believed criticisms are usually wrong, with objections long-known to practitioners of the alternate approaches, and so those people tend to think they’re being treated unfairly. But the wrong criticisms are often simplified versions of correct criticisms, passed down by the few people who dig deeply into these topics, criticisms that the alternative approaches don’t have good answers to.

The end result is that while string theory itself isn’t dominant, a sort of “string friendliness” is. Most of the jobs aren’t going to string theorists in the literal sense. But the academic world string theorists created keeps turning. People still respect string theorists and the research directions they find interesting, and people are still happy to collaborate and discuss with string theorists. For research communities people are more skeptical of, it must feel very isolating, like the world is still being run by their opponents. But this isn’t the kind of hegemony that can be solved by a revolution. Thinking that string theory is a failed research program, and people focused on it should have a harder time getting hired, is one thing. Thinking that everyone who respects at least one former string theorist should have a harder time getting hired is a very different goal. And if what you’re complaining about is “string friendliness”, not actual string theorists, then that’s what you’re asking for.

At Ars Technica Last Week, With a Piece on How Wacky Ideas Become Big Experiments

I had a piece last week at Ars Technica about the path ideas in physics take to become full-fledged experiments.

My original idea for the story was a light-hearted short news piece. A physicist at the University of Kansas, Steven Prohira, had just posted a proposal for wiring up a forest to detect high-energy neutrinos, using the trees like giant antennas.

Chatting to experts, what at first seemed silly started feeling like a hook for something more. Prohira has a strong track record, and the experts I talked to took his idea seriously. They had significant doubts, but I was struck by how answerable those doubts were, how rather than dismissing the whole enterprise they had in mind a list of questions one could actually test. I wrote a blog post laying out that impression here.

The editor at Ars was interested, so I dug deeper. Prohira’s story became a window on a wider-ranging question: how do experiments happen? How does a scientist convince the community to work on a project, and the government to fund it? How do ideas get tested before these giant experiments get built?

I tracked down researchers from existing experiments and got their stories. They told me how detecting particles from space takes ingenuity, with wacky ideas involving the natural world being surprisingly common. They walked me through tales of prototypes and jury-rigging and feasibility studies and approval processes.

The highlights of those tales ended up in the piece, but there was a lot I couldn’t include. In particular, I had a long chat with Sunil Gupta about the twists and turns taken by the GRAPES experiment in India. Luckily for you, some of the most interesting stories have already been covered, for example their measurement of the voltage of a thunderstorm or repurposing used building materials to keep costs down. I haven’t yet found his story about stirring wavelength-shifting chemicals all night using a propeller mounted on a power drill, but I suspect it’s out there somewhere. If not, maybe it can be the start of a new piece!