Gravity-Defying Theories

Universal gravitation was arguably Newton’s greatest discovery. Newton realized that the same laws could describe the orbits of the planets and the fall of objects on Earth, that bodies like the Moon can be fully understood only if you take into account both the Earth and the Sun’s gravity. In a Newtonian world, every mass attracts every other mass in a tiny, but detectable way.

Einstein, in turn, explained why. In Einstein’s general theory of relativity, gravity comes from the shape of space and time. Mass attracts mass, but energy affects gravity as well. Anything that can be measured has a gravitational effect, because the shape of space and time is nothing more than the rules by which we measure distances and times. So gravitation really is universal, and has to be universal.

…except when it isn’t.

It turns out, physicists can write down theories with some odd properties. Including theories where things are, in a certain sense, immune to gravity.

The story started with two mathematicians, Shiing-Shen Chern and Jim Simons. Chern and Simons weren’t trying to say anything in particular about physics. Instead, they cared about classifying different types of mathematical space. They found a formula that, when added up over one of these spaces, counted some interesting properties of that space. A bit more specifically, it told them about the space’s topology: rough details, like the number of holes in a donut, that stay the same even if the space is stretched or compressed. Their formula was called the Chern-Simons Form.

The physicist Albert Schwarz saw this Chern-Simons Form, and realized it could be interpreted another way. He looked at it as a formula describing a quantum field, like the electromagnetic field, describing how the field’s energy varied across space and time. He called the theory describing the field Chern-Simons Theory, and it was one of the first examples of what would come to be known as topological quantum field theories.

In a topological field theory, every question you might want to ask can be answered in a topological way. Write down the chance you observe the fields at particular strengths in particular places, and you’ll find that the answer you get only depends on the topology of the space the fields occupy. The answers are the same if the space is stretched or squished together. That means that nothing you ask depends on the details of how you measure things, that nothing depends on the detailed shape of space and time. Your theory is, in a certain sense, independent of gravity.

Others discovered more theories of this kind. Edward Witten found theories that at first looked like they depend on gravity, but where the gravity secretly “cancels out”, making the theory topological again. It turned out that there were many ways to “twist” string theory to get theories of this kind.

Our world is for the most part not described by a topological theory, gravity matters! (Though it can be a good approximation for describing certain materials.) These theories are most useful, though, in how they allow physicists and mathematicians to work together. Physicists don’t have a fully mathematically rigorous way of defining most of their theories, just a series of approximations and an overall picture that’s supposed to tie them together. For a topological theory, though, that overall picture has a rigorous mathematical meaning: it counts topological properties! As such, topological theories allow mathematicians to prove rigorous results about physical theories. It means they can take a theory of quantum fields or strings that has a particular property that physicists are curious about, and find a version of that property that they can study in fully mathematical rigorous detail. It’s been a boon both to mathematicians interested in topology, and to physicists who want to know more about their theories.

So while you won’t have antigravity boots any time soon, theories that defy gravity are still useful!

5 thoughts on “Gravity-Defying Theories

    1. 4gravitons's avatar4gravitons Post author

      Not knowing a ton about this area, it isn’t too surprising that topological defects can mimic some of the effects of a mass. I’d be a bit skeptical that you can get these kinds of topological defects without some kind of exotic physics though. Certainly cosmologists already are on the hunt for topological defects, and constrain a variety of BSM scenarios based on whether or not those defects would have already shown up in existing observations.

      Liked by 1 person

      Reply

Leave a reply to 4gravitons Cancel reply