A couple weeks back, someone asked me about a Veritasium video with the provocative title “Why No One Has Measured The Speed Of Light”. Veritasium is a science popularization youtube channel, and usually a fairly good one…so it was a bit surprising to see it make a claim usually reserved for crackpots. Many, many people have measured the speed of light, including Ole Rømer all the way back in 1676. To argue otherwise seems like it demands a massive conspiracy.
Veritasium wasn’t proposing a conspiracy, though, just a technical point. Yes, many experiments have measured the speed of light. However, the speed they measure is in fact a “two-way speed”, the speed that light takes to go somewhere and then come back. They leave open the possibility that light travels differently in different directions, and only has the measured speed on average: that there are different “one-way speeds” of light.
The loophole is clearest using some of the more vivid measurements of the speed of light, timing how long it takes to bounce off a mirror and return. It’s less clear using other measurements of the speed of light, like Rømer’s. Rømer measured the speed of light using the moons of Jupiter, noticing that the time they took to orbit appeared to change based on whether Jupiter was moving towards or away from the Earth. For this measurement Rømer didn’t send any light to Jupiter…but he did have to make assumptions about Jupiter’s rotation, using it like a distant clock. Those assumptions also leave the door open to a loophole, one where the different one-way speeds of light are compensated by different speeds for distant clocks. You can watch the Veritasium video for more details about how this works, or see the wikipedia page for the mathematical details.
When we think of the speed of light as the same in all directions, in some sense we’re making a choice. We’ve chosen a convention, called the Einstein synchronization convention, that lines up distant clocks in a particular way. We didn’t have to choose that convention, though we prefer to (the math gets quite a bit more complicated if we don’t). And crucially for any such choice, it is impossible for any experiment to tell the difference.
So far, Veritasium is doing fine here. But if the video was totally fine, I wouldn’t have written this post. The technical argument is fine, but the video screws up its implications.
Near the end of the video, the host speculates whether this ambiguity is a clue. What if a deeper theory of physics could explain why we can’t tell the difference between different synchronizations? Maybe that would hint at something important.
Well, it does hint at something important, but not something new. What it hints at is that “one-way speeds” don’t matter. Not for light, or really for anything else.
Think about measuring the speed of something, anything. There are two ways to do it. One is to time it against something else, like the signal in a wire, and assume we know that speed. Veritasium shows an example of this, measuring the speed of a baseball that hits a target and sends a signal back. The other way is to send it somewhere with a clock we trust, and compare it to our clock. Each of these requires that something goes back and forth, even if it’s not the same thing each time. We can’t measure the one-way speed of anything because we’re never in two places at once. Everything we measure, every conclusion we come to about the world, rests on something “two-way”: our actions go out, our perceptions go in. Even our depth perception is an inference from our ancestors, whose experience seeing food and traveling to it calibrated our notion of distance.
Synchronization of clocks is a convention because the external world is a convention. What we have really, objectively, truly, are our perceptions and our memories. Everything else is a model we build to fill the gaps in between. Some features of that model are essential: if you change them, you no longer match our perceptions. Other features, though, are just convenience: ways we arrange the model to make it easier to use, to make it not “sound dumb”, to tell a coherent story. Synchronization is one of those things: the notion that you can compare times in distant places is convenient, but as relativity already tells us in other contexts, not necessary. It’s part of our storytelling, not an essential part of our model.

