Monthly Archives: August 2020

Grants at the Other End

I’m a baby academic. Two years ago I got my first real grant, a Marie Curie Individual Fellowship from the European Union. Applying for it was a complicated process, full of Word templates and mismatched expectations. Two years later the grant is over, and I get another new experience: grant reporting.

Writing a report after a grant is sort of like applying for a grant. Instead of summarizing and justifying what you intend to do, you summarize and justify what you actually did. There are also Word templates. Grant reports are probably easier than grant applications: you don’t have to “hook” your audience or show off. But they are harder in one aspect: they highlight the different ways different fields handle uncertainty.

If you do experiments, having a clear plan makes sense. You buy special equipment and hire postdocs and even technicians to do specific jobs. Your experiments may or may not find what you hope for, but at least you can try to do them on schedule, and describe the setbacks when you can’t.

As a theorist, you’re more nimble. Your equipment are computers, your postdocs have their own research. Overall, it’s easy to pick up new projects as new ideas come in. As a result, your plans change more. New papers might inspire you to try new things. They might also discourage you, if you learn the idea you had won’t actually work. The field can move fast, and you want to keep up with it.

Writing my first grant report will be interesting. I’ll need to thread the gap between expectations and reality, to look back on my progress and talk about why. And of course, I have to do it in Microsoft Word.

Particles vs Waves, Particles vs Strings

On my “Who Am I?” page, I open with my background, calling myself a string theorist, then clarify: “in practice I’m more of a Particle Theorist, describing the world not in terms of short lengths of string but rather with particles that each occupy a single point in space”.

When I wrote that I didn’t think it would confuse people. Now that I’m older and wiser, I know people can be confused in a variety of ways. And since I recently saw someone confused about this particular phrase (yes I’m vagueblogging, but I suspect you’re reading this and know who you are 😉 ), I figured I’d explain it.

If you’ve learned a few things about quantum mechanics, maybe you have this slogan in mind:

“What we used to think of as particles are really waves. They spread out over an area, with peaks and troughs that interfere, and you never know exactly where you will measure them.”

With that in mind, my talk of “particles that each occupy a single point” doesn’t make sense. Doesn’t the slogan mean that particles don’t exist?

Here’s the thing: that’s the wrong slogan. The right slogan is just a bit different:

“What we used to think of as particles are ALSO waves. They spread out over an area, with peaks and troughs that interfere, and you never know exactly where you will measure them.”

The principle you were remembering is often called “wave-particle duality“. That doesn’t mean “particles don’t exist”. It means “waves and particles are the same thing”.

This matters, because just as wave-like properties are important, particle-like properties are important. And while it’s true that you can never know exactly where you will measure a particle, it’s also true that it’s useful, and even necessary, to think of it as occupying a single point.

That’s because particles can only affect each other when they’re at the same point. Physicists call this the principle of locality, the idea that there is no real “action at a distance”, everything happens because of something traveling from point A to point B. Wave-particle duality doesn’t change that, it just makes the specific point uncertain. It means you have to add up over every specific point where the particles could have interacted, but each term in your sum has to still involve a specific point: quantum mechanics doesn’t let particles affect each other non-locally.

Strings, in turn, are a little bit different. Strings have length, particles don’t. Particles interact at a point, strings can interact anywhere along the string. Strings introduce a teeny bit of non-locality.

When you compare particles and waves, you’re thinking pre-quantum mechanics, two classical things neither of which is the full picture. When you compare particles and strings, both are quantum, both are also waves. But in a meaningful sense one occupies a single point, and the other doesn’t.

The Pointy-Haired University

We all know what it looks like when office work sucks. Maybe you think of Dilbert, or The Office, or the dozens of other comics and shows with the same theme. You picture characters like Dilbert’s Pointy-Haired Boss, stupid and controlling, terrible people with far too much power.

Pictured: what you picture

What does it look like when grad school sucks?

There aren’t a lot of comics, or shows, about grad school. The main one I can think of is PHD Comics.

There are a few characters like the Pointy-Haired Boss in PHD Comics, who are just genuinely bad people, in particular the main character’s advisor Professor Smith. But for the most part, the dysfunction the comic depicts is subtler. Characters aren’t selfish so much as oblivious, they aren’t demanding out of malice but out of misplaced expectations, they’re ineffective not due to incompetence but to understandable human weaknesses.

The comic gets this mostly right. If you’re struggling in grad school, you might have a Pointy-Haired Advisor. But more likely, you’re surrounded by well-meaning, reasonable, intelligent people, who nevertheless are somehow making your life a living hell.

In that situation, it can be tempting to blame yourself. You instinctively look for someone at fault, some terrible person who’s causing the problem, and nobody knows your own faults better than you do.

But before you blame yourself, consider another possibility. Consider that there aren’t just Pointy-Haired Bosses, but Pointy-Haired Institutions. Start with the wrong rules, the wrong incentives, the wrong access to information and accountability, and those well-meaning, intelligent people will end up doing some pretty stupid things. Before deciding you aren’t good enough, ask yourself: is this the only way things could have gone? Instead of a Pointy-Haired Advisor, or a Pointy-Haired Self, maybe you’re just attending a Pointy-Haired University.

A Non-Amplitudish Solution to an Amplitudish Problem

There was an interesting paper last week, claiming to solve a long-standing problem in my subfield.

I calculate what are called scattering amplitudes, formulas that tell us the chance that two particles scatter off each other. Formulas like these exist for theories like the strong nuclear force, called Yang-Mills theories, they also exist for the hypothetical graviton particles of gravity. One of the biggest insights in scattering amplitude research in the last few decades is that these two types of formulas are tied together: as we like to say, gravity is Yang-Mills squared.

A huge chunk of my subfield grew out of that insight. For one, it’s why some of us think we have something useful to say about colliding black holes. But while it’s been used in a dozen different ways, an important element was missing: the principle was never actually proven (at least, not in the way it’s been used).

Now, a group in the UK and the Czech Republic claims to have proven it.

I say “claims” not because I’m skeptical, but because without a fair bit more reading I don’t think I can judge this one. That’s because the group, and the approach they use, isn’t “amplitudish”. They aren’t doing what amplitudes researchers would do.

In the amplitudes subfield, we like to write things as much as possible in terms of measurable, “on-shell” particles. This is in contrast to the older approach that writes things instead in terms of more general quantum fields, with formulas called Lagrangians to describe theories. In part, we avoid the older Lagrangian framing to avoid redundancy: there are many different ways to write a Lagrangian for the exact same physics. We have another reason though, which might seem contradictory: we avoid Lagrangians to stay flexible. There are many ways to rewrite scattering amplitudes that make different properties manifest, and some of the strangest ones don’t seem to correspond to any Lagrangian at all.

If you’d asked me before last week, I’d say that “gravity is Yang-Mills squared” was in that category: something you couldn’t make manifest fully with just a Lagrangian, that you’d need some stranger magic to prove. If this paper is right, then that’s wrong: if you’re careful enough you can prove “gravity is Yang-Mills squared” in the old-school, Lagrangian way.

I’m curious how this is going to develop: what amplitudes people will think about it, what will happen as the experts chime in. For now, as mentioned, I’m reserving judgement, except to say “interesting if true”.