“Nonperturbative” means that most of the people at this conference don’t use the loop-by-loop approximation of Feynman diagrams. Instead, they try to calculate things that don’t require approximations, finding formulas that work even for theories where the forces involved are very strong. In practice this works best in what are called “conformal” theories, roughly speaking these are theories that look the same whichever “scale” you use. Sometimes these theories are “integrable”, theories that can be “solved” exactly with no approximation. Sometimes these theories can be “bootstrapped”, starting with a guess and seeing how various principles of physics constrain it, mapping out a kind of “space of allowed theories”. Both approaches, integrability and bootstrap, are present at this conference.

This isn’t quite my community, but there’s a fair bit of overlap. We care about many of the same theories, like N=4 super Yang-Mills. We care about tricks to do integrals better, or to constrain mathematical guesses better, and we can trade these kinds of tricks and give each other advice. And while my work is typically “perturbative”, I did have one nonperturbative result to talk about, one which turns out to be more closely related to the methods these folks use than I had appreciated.

When I first read the title I thought “Natal” was supposed to be an adjective, making me wonder why the rest of the title is missing, as well as what conformal field theory has to do with birth.

itaibnWhen I first read the title I thought “Natal” was supposed to be an adjective, making me wonder why the rest of the title is missing, as well as what conformal field theory has to do with birth.

LikeLiked by 1 person