Monthly Archives: May 2017

Shades of Translation

I was playing Codenames with some friends, a game about giving one-word clues to multi-word answers. I wanted to hint at “undertaker” and “march”, so I figured I’d do “funeral march”. Since that’s two words, I needed one word that meant something similar. I went with dirge, then immediately regretted it as my teammates spent the better part of two minutes trying to figure out what it meant. In the end they went with “slug”.

lesma_slug

A dirge in its natural habitat.

If I had gone for requiem instead, we would have won. Heck, if I had just used “funeral”, we would have had a fighting chance. I had assumed my team knew the same words I did: they were also native English speakers, also nerds, etc. But the words they knew were still a shade different from the words I knew, and that made the difference.

When communicating science, you have to adapt to your audience. Knowing this, it’s still tempting to go for a shortcut. You list a few possible audiences, like “physicists”, or “children”, and then just make a standard explanation for each. This works pretty well…until it doesn’t, and your audience assumes a “dirge” is a type of slug.

In reality, each audience is different. Rather than just memorizing “translations” for a few specific groups, you need to pay attention to the shades of understanding in between.

On Wednesdays, Perimeter holds an Interdisciplinary Lunch. They cover a table with brown paper (for writing on) and impose one rule: you can’t sit next to someone in the same field.

This week, I sat next to an older fellow I hadn’t met before. He asked me what I did, and I gave my “standard physicist explanation”. This tends to be pretty heavy on jargon: while I don’t go too deep into my sub-field’s lingo, I don’t want to risk “talking down” to a physicist I don’t know. The end result is that I have to notice those “shades” of understanding as I go, hoping to get enough questions to change course if I need to.

Then I asked him what he did, and he patiently walked me through it. His explanation was more gradual: less worried about talking down to me, he was able to build up the background around his work, and the history of who worked on what. It was a bit humbling, to see the sort of honed explanation a person can build after telling variations on the same story for years.

In the end, we both had to adapt to what the other understood, to change course when our story wasn’t getting through. Neither of us could stick with the “standard physicist explanation” all the way to the end. Both of us had to shift from one shade to another, improving our translation.

The Many Worlds of Condensed Matter

Physics is the science of the very big and the very small. We study the smallest scales, the fundamental particles that make up the universe, and the largest, stars on up to the universe as a whole.

We also study the world in between, though.

That’s the domain of condensed matter, the study of solids, liquids, and other medium-sized arrangements of stuff. And while it doesn’t make the news as often, it’s arguably the biggest field in physics today.

(In case you’d like some numbers, the American Physical Society has divisions dedicated to different sub-fields. Condensed Matter Physics is almost twice the size of the next biggest division, Particles & Fields. Add in other sub-fields that focus on medium-sized-stuff, like those who work on solid state physics, optics, or biophysics, and you get a majority of physicists focused on the middle of the distance scale.)

When I started grad school, I didn’t pay much attention to condensed matter and related fields. Beyond the courses in quantum field theory and string theory, my “breadth” courses were on astrophysics and particle physics. But over and over again, from people in every sub-field, I kept hearing the same recommendation:

“You should take Solid State Physics. It’s a really great course!”

At the time, I never understood why. It was only later, once I had some research under my belt, that I realized:

Condensed matter uses quantum field theory!

The same basic framework, describing the world in terms of rippling quantum fields, doesn’t just work for fundamental particles. It also works for materials. Rather than describing the material in terms of its fundamental parts, condensed matter physicists “zoom out” and talk about overall properties, like sound waves and electric currents, treating them as if they were the particles of quantum field theory.

This tends to confuse the heck out of journalists. Not used to covering condensed matter (and sometimes egged on by hype from the physicists), they mix up the metaphorical particles of these systems with the sort of particles made by the LHC, with predictably dumb results.

Once you get past the clumsy journalism, though, this kind of analogy has a lot of value.

Occasionally, you’ll see an article about string theory providing useful tools for condensed matter. This happens, but it’s less widespread than some of the articles make it out to be: condensed matter is a huge and varied field, and string theory applications tend to be of interest to only a small piece of it.

It doesn’t get talked about much, but the dominant trend is actually in the other direction: increasingly, string theorists need to have at least a basic background in condensed matter.

String theory’s curse/triumph is that it can give rise not just to one quantum field theory, but many: a vast array of different worlds obtained by twisting extra dimensions in different ways. Particle physicists tend to study a fairly small range of such theories, looking for worlds close enough to ours that they still fit the evidence.

Condensed matter, in contrast, creates its own worlds. Pick the right material, take the right slice, and you get quantum field theories of almost any sort you like. While you can’t go to higher dimensions than our usual four, you can certainly look at lower ones, at the behavior of currents on a sheet of metal or atoms arranged in a line. This has led some condensed matter theorists to examine a wide range of quantum field theories with one strange behavior or another, theories that wouldn’t have occurred to particle physicists but that, in many cases, are part of the cornucopia of theories you can get out of string theory.

So if you want to explore the many worlds of string theory, the many worlds of condensed matter offer a useful guide. Increasingly, tools from that community, like integrability and tensor networks, are migrating over to ours.

It’s gotten to the point where I genuinely regret ignoring condensed matter in grad school. Parts of it are ubiquitous enough, and useful enough, that some of it is an expected part of a string theorist’s background. The many worlds of condensed matter, as it turned out, were well worth a look.

Pop Goes the Universe and Other Cosmic Microwave Background Games

(With apologies to whoever came up with this “book”.)

Back in February, Ijjas, Steinhardt, and Loeb wrote an article for Scientific American titled “Pop Goes the Universe” criticizing cosmic inflation, the proposal that the universe underwent a period of rapid expansion early in its life, smoothing it out to achieve the (mostly) uniform universe we see today. Recently, Scientific American published a response by Guth, Kaiser, Linde, Nomura, and 29 co-signers. This was followed by a counterresponse, which is the usual number of steps for this sort of thing before it dissipates harmlessly into the blogosphere.

In general, string theory, supersymmetry, and inflation tend to be criticized in very similar ways. Each gets accused of being unverifiable, able to be tuned to match any possible experimental result. Each has been claimed to be unfairly dominant, its position as “default answer” more due to the bandwagon effect than the idea’s merits. All three tend to get discussed in association with the multiverse, and blamed for dooming physics as a result. And all are frequently defended with one refrain: “If you have a better idea, what is it?”

It’s probably tempting (on both sides) to view this as just another example of that argument. In reality, though, string theory, supersymmetry, and inflation are all in very different situations. The details matter. And I worry that in this case both sides are too ready to assume the other is just making the “standard argument”, and ended up talking past each other.

When people say that string theory makes no predictions, they’re correct in a sense, but off topic: the majority of string theorists aren’t making the sort of claims that require successful predictions. When people say that inflation makes no predictions, if you assume they mean the same thing that people mean when they accuse string theory of making no predictions, then they’re flat-out wrong. Unlike string theorists, most people who work on inflation care a lot about experiment. They write papers filled with predictions, consequences for this or that model if this or that telescope sees something in the near future.

I don’t think Ijjas, Steinhardt, and Loeb were making that kind of argument.

When people say that supersymmetry makes no predictions, there’s some confusion of scope. (Low-energy) supersymmetry isn’t one specific proposal that needs defending on its own. It’s a class of different models, each with its own predictions. Given a specific proposal, one can see if it’s been ruled out by experiment, and predict what future experiments might say about it. Ruling out one model doesn’t rule out supersymmetry as a whole, but it doesn’t need to, because any given researcher isn’t arguing for supersymmetry as a whole: they’re arguing for their particular setup. The right “scope” is between specific supersymmetric models and specific non-supersymmetric models, not both as general principles.

Guth, Kaiser, Linde, and Nomura’s response follows similar lines in defending inflation. They point out that the wide variety of models are subject to being ruled out in the face of observation, and compare to the construction of the Standard Model in particle physics, with many possible parameters under the overall framework of Quantum Field Theory.

Ijjas, Steinhardt, and Loeb’s article certainly looked like it was making this sort of mistake. But as they clarify in the FAQ of their counter-response, they’ve got a more serious objection. They’re arguing that, unlike in the case of supersymmetry or the Standard Model, specific inflation models do not lead to specific predictions. They’re arguing that, because inflation typically leads to a multiverse, any specific model will in fact lead to a wide variety of possible observations. In effect, they’re arguing that the multitude of people busily making predictions based on inflationary models are missing a step in their calculations, underestimating their errors by a huge margin.

This is where I really regret that these arguments usually end after three steps (article, response, counter-response). Here Ijjas, Steinhardt, and Loeb are making what is essentially a technical claim, one that Guth, Kaiser, Linde, and Nomura could presumably respond to with a technical response, after which the rest of us would actually learn something. As-is, I certainly don’t have the background in inflation to know whether or not this point makes sense, and I’d love to hear from someone who does.

One aspect of this exchange that baffled me was the “accusation” that Ijjas, Steinhardt, and Loeb were just promoting their own work on bouncing cosmologies. (I put “accusation” in quotes because while Ijjas, Steinhardt, and Loeb seem to treat it as if it were an accusation, Guth, Kaiser, Linde, and Nomura don’t obviously mean it as one.)

“Bouncing cosmology” is Ijjas, Steinhardt, and Loeb’s answer to the standard “If you have a better idea, what is it?” response. It wasn’t the focus of their article, but while they seem to think this speaks well of them (hence their treatment of “promoting their own work” as if it were an accusation), I don’t. I read a lot of Scientific American growing up, and the best articles focused on explaining a positive vision: some cool new idea, mainstream or not, that could capture the public’s interest. That kind of article could still have included criticism of inflation, you’d want it in there to justify the use of a bouncing cosmology. But by going beyond that, it would have avoided falling into the standard back and forth that these arguments tend to, and maybe we would have actually learned from the exchange.

What Makes Light Move?

Light always moves at the speed of light.

It’s not alone in this: anything that lacks mass moves at the speed of light. Gluons, if they weren’t constantly interacting with each other, would move at the speed of light. Neutrinos, back when we thought they were massless, were thought to move at the speed of light. Gravitational waves, and by extension gravitons, move at the speed of light.

This is, on the face of it, a weird thing to say. If I say a jet moves at the speed of sound, I don’t mean that it always moves at the speed of sound. Find it in its hangar and hopefully it won’t be moving at all.

And so, people occasionally ask me, why can’t we find light in its hangar? Why does light never stand still? What makes light move?

(For the record, you can make light “stand still” in a material, but that’s because the material is absorbing and reflecting it, so it’s not the “same” light traveling through. Compare the speed of a wave of hands in a stadium versus the speed you could run past the seats.)

This is surprisingly tricky to explain without math. Some people point out that if you want to see light at rest you need to speed up to catch it, but you can’t accelerate enough unless you too are massless. This probably sounds a bit circular. Some people talk about how, from light’s perspective, no time passes at all. This is true, but it seems to confuse more than it helps. Some people say that light is “made of energy”, but I don’t like that metaphor. Nothing is “made of energy”, nor is anything “made of mass” either. Mass and energy are properties things can have.

I do like game metaphors though. So, imagine that each particle (including photons, particles of light) is a character in an RPG.

260px-yagami_light

For bonus points, play Light in an RPG.

You can think of energy as the particle’s “character points”. When the particle builds its character it gets a number of points determined by its energy. It can spend those points increasing its “stats”: mass and momentum, via the lesser-known big brother of E=mc^2, E^2=p^2c^2+m^2c^4.

Maybe the particle chooses to play something heavy, like a Higgs boson. Then they spend a lot of points on mass, and don’t have as much to spend on momentum. If they picked something lighter, like an electron, they’d have more to spend, so they could go faster. And if they spent nothing at all on mass, like light does, they could use all of their energy “points” boosting their speed.

Now, it turns out that these “energy points” don’t boost speed one for one, which is why low-energy light isn’t any slower than high-energy light. Instead, speed is determined by the ratio between energy and momentum. When they’re proportional to each other, when E^2=p^2c^2, then a particle is moving at the speed of light.

(Why this is is trickier to explain. You’ll have to trust me or wikipedia that the math works out.)

Some of you may be happy with this explanation, but others will accuse me of passing the buck. Ok, a photon with any energy will move at the speed of light. But why do photons have any energy at all? And even if they must move at the speed of light, what determines which direction?

Here I think part of the problem is an old physics metaphor, probably dating back to Newton, of a pool table.

220px-cribbage_pool_rack_closeup

A pool table is a decent metaphor for classical physics. You have moving objects following predictable paths, colliding off each other and the walls of the table.

Where people go wrong is in projecting this metaphor back to the beginning of the game. At the beginning of a game of pool, the balls are at rest, racked in the center. Then one of them is hit with the pool cue, and they’re set into motion.

In physics, we don’t tend to have such neat and tidy starting conditions. In particular, things don’t have to start at rest before something whacks them into motion.

A photon’s “start” might come from an unstable Higgs boson produced by the LHC. The Higgs decays, and turns into two photons. Since energy is conserved, these two each must have half of the energy of the original Higgs, including the energy that was “spent” on its mass. This process is quantum mechanical, and with no preferred direction the photons will emerge in a random one.

Photons in the LHC may seem like an artificial example, but in general whenever light is produced it’s due to particles interacting, and conservation of energy and momentum will send the light off in one direction or another.

(For the experts, there is of course the possibility of very low energy soft photons, but that’s a story for another day.)

Not even the beginning of the universe resembles that racked set of billiard balls. The question of what “initial conditions” make sense for the whole universe is a tricky one, but there isn’t a way to set it up where you start with light at rest. It’s not just that it’s not the default option: it isn’t even an available option.

Light moves at the speed of light, no matter what. That isn’t because light started at rest, and something pushed it. It’s because light has energy, and a particle has to spend its “character points” on something.