Monthly Archives: January 2016

PSI Winter School

I’m at the Perimeter Scholars International Winter School this week. Perimeter Scholars International is Perimeter’s one-of-a-kind master’s program in theoretical physics, that jams the basics of theoretical physics into a one-year curriculum. We’ve got students from all over the world, including plenty of places that don’t get any snow at all. As such, it was decided that the students need to spend a week somewhere with even more snow than Waterloo: Musoka, Ontario.

IMG_20160127_152710

A place that occasionally manages to be this photogenic

This isn’t really a break for them, though, which is where I come in. The students have been organized into groups, and each group is working on a project. My group’s project is related to the work of integrability master Pedro Vieira. He and his collaborators came up with a way to calculate scattering amplitudes in N=4 super Yang-Mills without the usual process of loop-by-loop approximations. However, this method comes at a price: a new approximation, this time to low energy. This approximation is step-by-step, like loops, but in a different direction. It’s called the Pentagon Operator Product Expansion, or POPE for short.

IMG_20160127_123210

Approach the POPE, and receive a blessing

What we’re trying to do is go back and add up all of the step-by-step terms in the approximation, to see if we can match to the old expansion in loops. One of Pedro’s students recently managed to do this for the first approximation (“tree” diagrams), and the group here at the Winter School is trying to use her (still unpublished) work as a jumping-off point to get to the first loop. Time will tell whether we’ll succeed…but we’re making progress, and the students are learning a lot.

Trust Your Notation as Far as You Can Prove It

Calculus contains one of the most famous examples of physicists doing something silly that irritates mathematicians. See, there are two different ways to write down a derivative, both dating back to the invention of calculus: Newton’s method, and Leibniz’s method.

Newton cared a lot about rigor (enough that he actually published his major physics results without calculus because he didn’t think calculus was rigorous enough, despite inventing it himself). His notation is direct and to the point: if you want to take the derivative of a function f of x, you write,

f'(x)

Leibniz cared a lot less about rigor, and a lot more about the scientific community. He wanted his notation to be useful and intuitive, to be the sort of thing that people would pick up and run with. To write a derivative in Leibniz notation, you write,

\frac{df}{dx}

This looks like a fraction. It’s really, really tempting to treat it like a fraction. And that’s the point: it’s to tell you that treating it like a fraction is often the right thing to do. In particular, you can do something like this,

y=\frac{df}{dx}

y dx=df

\int y dx=\int df

and what you did actually makes a certain amount of sense.

The tricky thing here is that it doesn’t always make sense. You can do these sorts of tricks up to a point, but you need to be aware that they really are just tricks. Take the notation too seriously, and you end up doing things you aren’t really allowed to do. It’s always important to stay aware of what you’re really doing.

There are a lot of examples of this kind of thing in physics. In quantum field theory, we use path integrals. These aren’t really integrals…but a lot of the time, we can treat them as such. Operators in quantum mechanics can be treated like numbers and multiplied…up to a point. A friend of mine was recently getting confused by operator product expansions, where similar issues crop up.

I’ve found two ways to clear up this kind of confusion. One is to unpack your notation: go back to the definitions, and make sure that what you’re doing really makes sense. This can be tedious, but you can be confident that you’re getting the right answer.

The other option is to stop treating your notation like the familiar thing it resembles, and start treating it like uncharted territory. You’re using this sort of notation to remind you of certain operations you can do, certain rules you need to follow. If you take those rules as basic, you can think about what you’re doing in terms of axioms rather than in terms of the suggestions made by your notation. Follow the right axioms, and you’ll stay within the bounds of what you’re actually allowed to do.

Either way, familiar-looking notation can help your intuition, making calculations more fluid. Just don’t trust it farther than you can prove it.

Amplitudes for the New Year

Ah, the new year, time of new year’s resolutions. While some people resolve to go to the gym or take up online dating, physicists resolve to finally get that paper out.

At least, that’s the impression I get, given the number of papers posted to arXiv in the last month. Since a lot of them were amplitudes-related, I figured I’d go over some highlights.

Everyone once in a while people ask me for the latest news on the amplituhedron. While I don’t know what Nima is working on right now, I can point to what others have been doing. Zvi Bern, Jaroslav Trnka, and collaborators have continued to make progress towards generalizing the amplituhedron to non-planar amplitudes. Meanwhile, a group in Europe has been working on solving an issue I’ve glossed over to some extent. While the amplituhedron is often described as calculating an amplitude as the volume of a geometrical object, in fact there is a somewhat more indirect procedure involved in going from the geometrical object to the amplitude. It would be much simpler if the amplitude was actually the volume of some (different) geometrical object, and that’s what these folks are working towards. Finally, Daniele Galloni has made progress on solving a technical issue: the amplituhedron gives a mathematical recipe for the amplitude, but it doesn’t tell you how to carry out that recipe, and Galloni provides an algorithm for part of this process.

With this new algorithm, is the amplituhedron finally as efficient as older methods? Typically, the way to show that is to do a calculation with the amplituhedron that wasn’t possible before. It doesn’t look like that’s happening soon though, as Jake Bourjaily and collaborators compute an eight-loop integrand using one of the more successful of the older methods. Their paper provides a good answer to the perennial question, “why more loops?” What they find is that some of the assumptions that people made at lower loops fail to hold at this high loop order, and it becomes increasingly important to keep track of exactly how far your symmetries can take you.

Back when I visited Brown, I talked to folks there about some ongoing work. Now that they’ve published, I can talk about it. A while back, Juan Maldacena resurrected an old technique of Landau’s to solve a problem in AdS/CFT. In that paper, he suggested that Landau’s trick might help prove some of the impressive simplifications in N=4 super Yang-Mills that underlie my work and the work of those at Brown. In their new paper, the Brown group finds that, while useful, Landau’s trick doesn’t seem to fully explain the simplicity they’ve discovered. To get a little partisan, I have to say that this was largely the result I expected, and that it felt a bit condescending for Maldacena to assume that an old trick like that from the Feynman diagram era could really be enough to explain one of the big discoveries of amplitudeology.

There was also a paper by Freddy Cachazo and collaborators on an interesting trick to extend their CHY string to one-loop, and one by Bo Feng and collaborators on an intriguing new method called Q-cuts that I will probably say more about in future, but I’ll sign off for now. I’ve got my own new years’ physics resolutions, and I ought to get back to work!

The Higgs Solution

My grandfather is a molecular biologist. Over the holidays I had many opportunities to chat with him, and our conversations often revolved around explaining some aspect of our respective fields. While talking to him, I came up with a chemistry-themed description of the Higgs field, and how it leads to electro-weak symmetry breaking. Very few of you are likely to be chemists, but I think you still might find the metaphor worthwhile.

Picture the Higgs as a mixture of ions, dissolved in water.

In this metaphor, the Higgs field is a sort of “Higgs solution”. Overall, this solution should be uniform: if you have more ions of a certain type in one place than another, over time they will dissolve until they reach a uniform mixture again. In this metaphor, the Higgs particle detected by the LHC is like a brief disturbance in the fluid: by stirring the solution at high energy, we’ve managed to briefly get more of one type of ion in one place than the average concentration.

What determines the average concentration, though?

Essentially, it’s arbitrary. If this were really a chemistry experiment, it would depend on the initial conditions: which ions we put in to the mixture in the first place. In physics, quantum mechanics plays a role, randomly selecting one option out of the many possibilities.

 

nile_red_01

Choose wisely

(Note that this metaphor doesn’t explain why there has to be a solution, why the water can’t just be “pure”. A setup that required this would probably be chemically complicated enough to confuse nearly everybody, so I’m leaving that feature out. Just trust that “no ions” isn’t one of our options.)

Up till now, the choice of mixture didn’t matter very much. But different ions interact with other chemicals in different ways, and this has some interesting implications.

Suppose we have a tube filled with our Higgs solution. We want to shoot some substance through the tube, and collect it on the other side. This other substance is going to represent a force.

If our force substance doesn’t react with the ions in our Higgs solution, it will just go through to the other side. If it does react, though, then it will be slowed down, and only some of it will get to the other side, possibly none at all.

You can think of the electro-weak force as a mixture of these sorts of substances. Normally, there is no way to tell the different substances apart. Just like the different Higgs solutions, different parts of the electro-weak force are arbitrary.

However, once we’ve chosen a Higgs solution, things change. Now, different parts of our electro-weak substance will behave differently. The parts that react with the ions in our Higgs solution will slow down, and won’t make it through the tube, while the parts that don’t interact will just flow on through.

We call the part that gets through the tube electromagnetism, and the part that doesn’t the weak nuclear force. Electromagnetism is long-range, its waves (light) can travel great distances. The weak nuclear force is short-range, and doesn’t have an effect outside of the scale of atoms.

The important thing to take away from this is that the division between electromagnetism and the weak nuclear force is totally arbitrary. Taken by themselves, they’re equivalent parts of the same, electro-weak force. It’s only because some of them interact with the Higgs, while others don’t, that we distinguish those parts from each other. If the Higgs solution were a different mixture (if the Higgs field had different charges) then a different part of the electroweak force would be long-range, and a different part would be short-range.

We wouldn’t be able to tell the difference, though. We’d see a long-range force, and a short-range force, and a Higgs field. In the end, our world would be completely the same, just based on a different, arbitrary choice.

Who Needs Non-Empirical Confirmation?

I’ve figured out what was bugging me about Dawid’s workshop on non-empirical theory confirmation.

It’s not the concept itself that bothers me. While you might think of science as entirely based on observations of the real world, in practice we can’t test everything. Inevitably, we have to add in other sorts of evidence: judgments based on precedent, philosophical considerations, or sociological factors.

It’s Dawid’s examples that annoy me: string theory, inflation, and the multiverse. Misleading popularizations aside, none of these ideas involve non-empirical confirmation. In particular, string theory doesn’t need non-empirical confirmation, inflation doesn’t want it, and the multiverse, as of yet, doesn’t merit it.

In order for non-empirical confirmation to matter, it needs to affect how people do science. Public statements aren’t very relevant from a philosophy of science perspective; they ebb and flow based on how people promote themselves. Rather, we should care about what scientists assume in the course of their work. If people are basing new work on assumptions that haven’t been established experimentally, then we need to make sure their confidence isn’t misplaced.

String theory hasn’t been established experimentally…but it fails the other side of this test: almost no-one is assuming string theory is true.

I’ve talked before about theorists who study theories that aren’t true. String theory isn’t quite in that category, it’s still quite possible that it describes the real world. Nonetheless, for most string theorists, the distinction is irrelevant: string theory is a way to relate different quantum field theories together, and to formulate novel ones with interesting properties. That sort of research doesn’t rely on string theory being true, often it doesn’t directly involve strings at all. Rather, it relies on string theory’s mathematical abundance, its versatility and power as a lens to look at the world.

There are string theorists who are more directly interested in describing the world with string theory, though they’re a minority. They’re called String Phenomenologists. By itself, “phenomenologist” refers to particle physicists who try to propose theories that can be tested in the real world. “String phenomenology” is actually a bit misleading, since most string phenomenologists aren’t actually in the business of creating new testable theories. Rather, they try to reproduce some of the more common proposals of phenomenologists, like the MSSM, from within the framework of string theory. While string theory can reproduce many possible descriptions of the world (10^500 by some estimates), that doesn’t mean it covers every possible theory; making sure it can cover realistic options is an important, ongoing technical challenge. Beyond that, a minority within a minority of string phenomenologists actually try to make testable predictions, though often these are controversial.

None of these people need non-empirical confirmation. For the majority of string theorists, string theory doesn’t need to be “confirmed” at all. And for the minority who work on string phenomenology, empirical confirmation is still the order of the day, either directly from experiment or indirectly from the particle phenomenologists struggling to describe it.

What about inflation?

Cosmic inflation was proposed to solve an empirical problem, the surprising uniformity of the observed universe. Look through a few papers in the field, and you’ll notice that most are dedicated to finding empirical confirmation: they’re proposing observable effects on the cosmic microwave background, or on the distribution of large-scale structures in the universe. Cosmologists who study inflation aren’t claiming to be certain, and they aren’t rejecting experiment: overall, they don’t actually want non-empirical confirmation.

To be honest, though, I’m being a little unfair to Dawid here. The reason that string theory and inflation are in the name of his workshop aren’t because he thinks they independently use non-empirical confirmation. Rather, it’s because, if you view both as confirmed (and make a few other assumptions), then you’ve got a multiverse.

In this case, it’s again important to compare what people are doing in their actual work to what they’re saying in public. While a lot of people have made public claims about the existence of a multiverse, very few of them actually work on it. In fact, the two sets of people seem to be almost entirely disjoint.

People who make public statements about the multiverse tend to be older prominent physicists, often ones who’ve worked on supersymmetry as a solution to the naturalness problem. For them, the multiverse is essentially an excuse. Naturalness predicted new particles, we didn’t find new particles, so we need an excuse to have an “unnatural” universe, and for many people the multiverse is that excuse. As I’ve argued before, though, this excuse doesn’t have much of an impact on research. These people aren’t discouraged from coming up with new ideas because they believe in the multiverse, rather, they’re talking about the multiverse because they’re currently out of new ideas. Nima Arkani-Hamed is a pretty clear case of someone who has supported the multiverse in pieces like Particle Fever, but who also gets thoroughly excited about new ideas to rescue naturalness.

By contrast, there are many fewer people who actually work on the multiverse itself, and they’re usually less prominent. For the most part, they actually seem concerned with empirical confirmation, trying to hone tricks like anthropic reasoning to the point where they can actually make predictions about future experiments. It’s unclear whether this tiny group of people are on the right track…but what they’re doing definitely doesn’t seem like something that merits non-empirical confirmation, at least at this point.

It’s a shame that Dawid chose the focus he did for his workshop. Non-empirical theory confirmation is an interesting idea (albeit one almost certainly known to philosophy long before Dawid), and there are plenty of places in physics where it could use some examination. We seem to have come to our current interpretation of renormalization non-empirically, and while string theory itself doesn’t rely on non-empirical conformation many of its arguments with loop quantum gravity seem to rely on non-empirical considerations, in particular arguments about what is actually required for a proper theory of quantum gravity. But string theory, inflation, and the multiverse aren’t the examples he’s looking for.