Tag Archives: pedagogy

Ideally, Exams Are for the Students

I should preface this by saying I don’t actually know that much about education. I taught a bit in my previous life as a professor, yes, but I probably spent more time being taught how to teach than actually teaching.

Recently, the Atlantic had a piece about testing accommodations for university students, like extra time on exams, or getting to do an exam in a special distraction-free environment. The piece quotes university employees who are having more and more trouble satisfying these accommodations, and includes the statistic that 20 percent of undergraduate students at Brown and Harvard are registered as disabled.

The piece has kicked off a firestorm on social media, mostly focused on that statistic (which conveniently appears just before the piece’s paywall). People are shocked, and cynical. They feel like more and more students are cheating the system, getting accommodations that they don’t actually deserve.

I feel like there is a missing mood in these discussions, that the social media furor is approaching this from the wrong perspective. People are forgetting what exams actually ought to be for.

Exams are for the students.

Exams are measurement tools. An exam for a class says whether a student has learned the material, or whether they haven’t, and need to retake the class or do more work to get there. An entrance exam, or a standardized exam like the SAT, predicts a student’s future success: whether they will be able to benefit from the material at a university, or whether they don’t yet have the background for that particular program of study.

These are all pieces of information that are most important to the students themselves, that help them structure their decisions. If you want to learn the material, should you take the course again? Which universities are you prepared for, and which not?

We have accommodations, and concepts like disability, because we believe that there are kinds of students for whom the exams don’t give this information accurately. We think that a student with more time, or who can take the exam in a distraction-free environment, would have a more accurate idea of whether they need to retake the material, or whether they’re ready for a course of study, than a student who has to take the exam under ordinary conditions. And we think we can identify the students who this matters for, and the students for whom this doesn’t matter nearly as much.

These aren’t claims about our values, or about what students deserve. They’re empirical claims, about how test results correlate with outcomes the students want. The conversation, then, needs to be built on top of those empirical claims. Are we better at predicting the success of students that receive accommodations, or worse? Can we measure that at all, or are we just guessing? And are we communicating the consequences accurately to students, that exam results tell them something useful and statistically robust that should help them plan their lives?

Values come in later, of course. We don’t have infinite resources, as the Atlantic piece emphasizes. We can’t measure everyone with as much precision as we would like. At some level, generalization takes over and accuracy is lost. There is absolutely a debate to be had about which measurements we can afford to make, and which we can’t.

But in order to have that argument at all, we first need to agree on what we’re measuring. And I feel like most of the people talking about this piece haven’t gotten there yet.

From Journal to Classroom

As part of the pedagogy course I’ve been taking, I’m doing a few guest lectures in various courses. I’ve got one coming up in a classical mechanics course (“intermediate”-level, so not Newton’s laws, but stuff the general public doesn’t know much about like Hamiltonians). They’ve been speeding through the core content, so I got to cover a “fun” topic, and after thinking back to my grad school days I chose a topic I think they’ll have a lot of fun with: Chaos theory.

Getting the obligatory Warhammer reference out of the way now

Chaos is one of those things everyone has a vague idea about. People have heard stories where a butterfly flaps its wings and causes a hurricane. Maybe they’ve heard of the rough concept, determinism with strong dependence on the initial conditions, so a tiny change (like that butterfly) can have huge consequences. Maybe they’ve seen pictures of fractals, and got the idea these are somehow related.

Its role in physics is a bit more detailed. It’s one of those concepts that “intermediate classical mechanics” is good for, one that can be much better understood once you’ve been introduced to some of the nineteenth century’s mathematical tools. It felt like a good way to show this class that the things they’ve learned aren’t just useful for dusty old problems, but for understanding something the public thinks is sexy and mysterious.

As luck would have it, the venerable textbook the students are using includes a (2000’s era) chapter on chaos. I read through it, and it struck me that it’s a very different chapter from most of the others. This hit me particularly when I noticed a section describing a famous early study of chaos, and I realized that all the illustrations were based on the actual original journal article.

I had surprisingly mixed feelings about this.

On the one hand, there’s a big fashion right now for something called research-based teaching. That doesn’t mean “using teaching methods that are justified by research” (though you’re supposed to do that too), but rather, “tying your teaching to current scientific research”. This is a fashion that makes sense, because learning about cutting-edge research in an undergraduate classroom feels pretty cool. It lets students feel more connected with the scientific community, it inspires them to get involved, and it gets them more used to what “real research” looks like.

On the other hand, structuring your textbook based on the original research papers feels kind of lazy. There’s a reason we don’t teach Newtonian mechanics the way Newton would have. Pedagogy is supposed to be something we improve at over time: we come up with better examples and better notation, more focused explanations that teach what we want students to learn. If we just summarize a paper, we’re not really providing “added value”: we should hope, at this point, that we can do better.

Thinking about this, I think the distinction boils down to why you’re teaching the material in the first place.

With a lot of research-based teaching, the goal is to show the students how to interact with current literature. You want to show them journal papers, not because the papers are the best way to teach a concept or skill, but because reading those papers is one of the skills you want to teach.

That makes sense for very current topics, but it seems a bit weird for the example I’ve been looking at, an early study of chaos from the 60’s. It’s great if students can read current papers, but they don’t necessarily need to read older ones. (At least, not yet.)

What then, is the textbook trying to teach? Here things get a bit messy. For a relatively old topic, you’d ideally want to teach not just a vague impression of what was discovered, but concrete skills. Here though, those skills are just a bit beyond the students’ reach: chaos is more approachable than you’d think, but still not 100% something the students can work with. Instead they’re learning to appreciate concepts. This can be quite valuable, but it doesn’t give the kind of structure that a concrete skill does. In particular, it makes it hard to know what to emphasize, beyond just summarizing the original article.

In this case, I’ve come up with my own way forward. There are actually concrete skills I’d like to teach. They’re skills that link up with what the textbook is teaching, skills grounded in the concepts it’s trying to convey, and that makes me think I can convey them. It will give some structure to the lesson, a focus on not merely what I’d like the students to think but what I’d like them to do.

I won’t go into too much detail: I suspect some of the students may be reading this, and I don’t want to spoil the surprise! But I’m looking forward to class, and to getting to try another pedagogical experiment.