Tag Archives: nuclear physics

The Rocks in the Ground Era of Fundamental Physics

It’s no secret that the early twentieth century was a great time to make progress in fundamental physics. On one level, it was an era when huge swaths of our understanding of the world were being rewritten, with relativity and quantum mechanics just being explored. It was a time when a bright student could guide the emergence of whole new branches of scholarship, and recently discovered physical laws could influence world events on a massive scale.

Put that way, it sounds like it was a time of low-hanging fruit, the early days of a field when great strides can be made before the easy problems are all solved and only the hard ones are left. And that’s part of it, certainly: the fields sprung from that era have gotten more complex and challenging over time, requiring more specialized knowledge to make any kind of progress. But there is also a physical reason why physicists had such an enormous impact back then.

The early twentieth century was the last time that you could dig up a rock out of the ground, do some chemistry, and end up with a discovery about the fundamental laws of physics.

When scientists like Curie and Becquerel were working with uranium, they didn’t yet understand the nature of atoms. The distinctions between elements were described in qualitative terms, but only just beginning to be physically understood. That meant that a weird object in nature, “a weird rock”, could do quite a lot of interesting things.

And once you find a rock that does something physically unexpected, you can scale up. From the chemistry experiments of a single scientist’s lab, countries can build industrial processes to multiply the effect. Nuclear power and the bomb were such radical changes because they represented the end effect of understanding the nature of atoms, and atoms are something people could build factories to manipulate.

Scientists went on to push that understanding further. They wanted to know what the smallest pieces of matter were composed of, to learn the laws behind the most fundamental laws they knew. And with relativity and quantum mechanics, they could begin to do so systematically.

US particle physics has a nice bit of branding. They talk about three frontiers: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier.

Some things we can’t yet test in physics are gated by energy. If we haven’t discovered a particle, it may be because it’s unstable, decaying quickly into lighter particles so we can’t observe it in everyday life. If these particles interact appreciably with particles of everyday matter like protons and electrons, then we can try to make them in particle colliders. These end up creating pretty much everything up to a certain mass, due to a combination of the tendency in quantum mechanics for everything that can happen to happen, and relativity’s E=mc^2. In the mid-20th century these particle colliders were serious pieces of machinery, but still small enough to make industrial: now, there are so-called medical accelerators in many hospitals based on their designs. But current particle accelerators are a different beast, massive facilities built by international collaborations. This is the Energy Frontier.

Some things in physics are gated by how rare they are. Some particles interact only very faintly with other particles, so to detect them, physicists have to scan a huge chunk of matter, a giant tank of argon or a kilometer of antarctic ice, looking for deviations from the norm. Over time, these experiments have gotten bigger, looking for more and more subtle effects. A few weird ones still fit on tabletops, but only because they have the tools to measure incredibly small variations. Most are gigantic. This is the Intensity Frontier.

Finally, the Cosmic Frontier looks for the unknown behind both kinds of gates, using the wider universe to look at events with extremely high energy or size.

Pushing these frontiers has meant cleaning up our understanding of the fundamental laws of physics up to these frontiers. It means that whatever is still hiding, it either requires huge amounts of energy to produce, or is an extremely rare, subtle effect.

That means that you shouldn’t expect another nuclear bomb out of fundamental physics. Physics experiments are already working on vast scales, to the extent that a secret government project would have to be smaller than publicly known experiments, in physical size, energy use, and budget. And you shouldn’t expect another nuclear power plant, either: we’ve long passed the kinds of things you could devise a clever industrial process to take advantage of at scale.

Instead, new fundamental physics will only be directly useful once we’re the kind of civilization that operates on a much greater scale than we do today. That means larger than the solar system: there wouldn’t be much advantage, at this point, of putting a particle physics experiment on the edge of the Sun. It means the kind of civilization that tosses galaxies around.

It means that right now, you won’t see militaries or companies pushing the frontiers of fundamental physics, unlike the way they might have wanted to at the dawn of the twentieth century. By the time fundamental physics is useful in that way, all of these actors will likely be radically different: companies, governments, and in all likelihood human beings themselves. Instead, supporting fundamental physics right now is an act of philanthropy, maintaining a practice because it maintains good habits of thought and produces powerful ideas, the same reasons organizations support mathematics or poetry. That’s not nothing, and fundamental physics is still often affordable as philanthropy goes. But it’s not changing the world, not the way physicists did in the early twentieth century.

IPhT-60 Retrospective

Last week, my institute had its 60th anniversary party, which like every party in academia takes the form of a conference.

For unclear reasons, this one also included a physics-themed arcade game machine.

Going in, I knew very little about the history of the Institute of Theoretical Physics, of the CEA it’s part of (Commissariat of Atomic Energy, now Atomic and Alternative Energy), or of French physics in general, so I found the first few talks very interesting. I learned that in France in the early 1950’s, theoretical physics was quite neglected. Key developments, like relativity and statistical mechanics, were seen as “too German” due to their origins with Einstein and Boltzmann (nevermind that this was precisely why the Nazis thought they were “not German enough”), while de Broglie suppressed investigation of quantum mechanics. It took French people educated abroad to come back and jumpstart progress.

The CEA is, in a sense, the French equivalent of the some of the US’s national labs, and like them got its start as part of a national push towards nuclear weapons and nuclear power.

(Unlike the US’s national labs, the CEA is technically a private company. It’s not even a non-profit: there are for-profit components that sell services and technology to the energy industry. Never fear, my work remains strictly useless.)

My official title is Ingénieur Chercheur, research engineer. In the early days, that title was more literal. Most of the CEA’s first permanent employees didn’t have PhDs, but were hired straight out of undergraduate studies. The director, Claude Bloch, was in his 40’s, but most of the others were in their 20’s. There was apparently quite a bit of imposter syndrome back then, with very young people struggling to catch up to the global state of the art.

They did manage to catch up, though, and even excel. In the 60’s and 70’s, researchers at the institute laid the groundwork for a lot of ideas that are popular in my field at the moment. Stora’s work established a new way to think about symmetry that became the textbook approach we all learn in school, while Froissart figured out a consistency condition for high-energy physics whose consequences we’re still teasing out. Pham was another major figure at the institute in that era. With my rudimentary French I started reading his work back in Copenhagen, looking for new insights. I didn’t go nearly as fast as my partner in the reading group though, whose mastery of French and mathematics has seen him use Pham’s work in surprising new ways.

Hearing about my institute’s past, I felt a bit of pride in the physicists of the era, not just for the science they accomplished but for the tools they built to do it. This was the era of preprints, first as physical papers, orange folders mailed to lists around the world, and later online as the arXiv. Physicists here were early adopters of some aspects, though late adopters of others (they were still mailing orange folders a ways into the 90’s). They also adopted computation, with giant punch-card reading, sheets-of-output-producing computers staffed at all hours of the night. A few physicists dove deep into the new machines, and guided the others as capabilities changed and evolved, while others were mostly just annoyed by the noise!

When the institute began, scientific papers were still typed on actual typewriters, with equations handwritten in or typeset in ingenious ways. A pool of secretaries handled much of the typing, many of whom were able to come to the conference! I wonder what they felt, seeing what the institute has become since.

I also got to learn a bit about the institute’s present, and by implication its future. I saw talks covering different areas, from multiple angles on mathematical physics to simulations of large numbers of particles, quantum computing, and machine learning. I even learned a bit from talks on my own area of high-energy physics, highlighting how much one can learn from talking to new people.