It’s no secret that the early twentieth century was a great time to make progress in fundamental physics. On one level, it was an era when huge swaths of our understanding of the world were being rewritten, with relativity and quantum mechanics just being explored. It was a time when a bright student could guide the emergence of whole new branches of scholarship, and recently discovered physical laws could influence world events on a massive scale.
Put that way, it sounds like it was a time of low-hanging fruit, the early days of a field when great strides can be made before the easy problems are all solved and only the hard ones are left. And that’s part of it, certainly: the fields sprung from that era have gotten more complex and challenging over time, requiring more specialized knowledge to make any kind of progress. But there is also a physical reason why physicists had such an enormous impact back then.
The early twentieth century was the last time that you could dig up a rock out of the ground, do some chemistry, and end up with a discovery about the fundamental laws of physics.
When scientists like Curie and Becquerel were working with uranium, they didn’t yet understand the nature of atoms. The distinctions between elements were described in qualitative terms, but only just beginning to be physically understood. That meant that a weird object in nature, “a weird rock”, could do quite a lot of interesting things.
And once you find a rock that does something physically unexpected, you can scale up. From the chemistry experiments of a single scientist’s lab, countries can build industrial processes to multiply the effect. Nuclear power and the bomb were such radical changes because they represented the end effect of understanding the nature of atoms, and atoms are something people could build factories to manipulate.
Scientists went on to push that understanding further. They wanted to know what the smallest pieces of matter were composed of, to learn the laws behind the most fundamental laws they knew. And with relativity and quantum mechanics, they could begin to do so systematically.
US particle physics has a nice bit of branding. They talk about three frontiers: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier.
Some things we can’t yet test in physics are gated by energy. If we haven’t discovered a particle, it may be because it’s unstable, decaying quickly into lighter particles so we can’t observe it in everyday life. If these particles interact appreciably with particles of everyday matter like protons and electrons, then we can try to make them in particle colliders. These end up creating pretty much everything up to a certain mass, due to a combination of the tendency in quantum mechanics for everything that can happen to happen, and relativity’s . In the mid-20th century these particle colliders were serious pieces of machinery, but still small enough to make industrial: now, there are so-called medical accelerators in many hospitals based on their designs. But current particle accelerators are a different beast, massive facilities built by international collaborations. This is the Energy Frontier.
Some things in physics are gated by how rare they are. Some particles interact only very faintly with other particles, so to detect them, physicists have to scan a huge chunk of matter, a giant tank of argon or a kilometer of antarctic ice, looking for deviations from the norm. Over time, these experiments have gotten bigger, looking for more and more subtle effects. A few weird ones still fit on tabletops, but only because they have the tools to measure incredibly small variations. Most are gigantic. This is the Intensity Frontier.
Finally, the Cosmic Frontier looks for the unknown behind both kinds of gates, using the wider universe to look at events with extremely high energy or size.
Pushing these frontiers has meant cleaning up our understanding of the fundamental laws of physics up to these frontiers. It means that whatever is still hiding, it either requires huge amounts of energy to produce, or is an extremely rare, subtle effect.
That means that you shouldn’t expect another nuclear bomb out of fundamental physics. Physics experiments are already working on vast scales, to the extent that a secret government project would have to be smaller than publicly known experiments, in physical size, energy use, and budget. And you shouldn’t expect another nuclear power plant, either: we’ve long passed the kinds of things you could devise a clever industrial process to take advantage of at scale.
Instead, new fundamental physics will only be directly useful once we’re the kind of civilization that operates on a much greater scale than we do today. That means larger than the solar system: there wouldn’t be much advantage, at this point, of putting a particle physics experiment on the edge of the Sun. It means the kind of civilization that tosses galaxies around.
It means that right now, you won’t see militaries or companies pushing the frontiers of fundamental physics, unlike the way they might have wanted to at the dawn of the twentieth century. By the time fundamental physics is useful in that way, all of these actors will likely be radically different: companies, governments, and in all likelihood human beings themselves. Instead, supporting fundamental physics right now is an act of philanthropy, maintaining a practice because it maintains good habits of thought and produces powerful ideas, the same reasons organizations support mathematics or poetry. That’s not nothing, and fundamental physics is still often affordable as philanthropy goes. But it’s not changing the world, not the way physicists did in the early twentieth century.


