Category Archives: Life as a Physicist

Lack of Recognition Is a Symptom, Not a Cause

Science is all about being first. Once a discovery has been made, discovering the same thing again is redundant. At best, you can improve the statistical evidence…but for a theorem or a concept, you don’t even have that. This is why we make such a big deal about priority: the first person to discover something did something very valuable. The second, no matter how much effort and insight went into their work, did not.

Because priority matters, for every big scientific discovery there is a priority dispute. Read about science’s greatest hits, and you’ll find people who were left in the wings despite their accomplishments, people who arguably found key ideas and key discoveries earlier than the people who ended up famous. That’s why the idea Peter Higgs is best known for, the Higgs mechanism,

“is therefore also called the Brout–Englert–Higgs mechanism, or Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism, Anderson–Higgs mechanism,Anderson–Higgs–Kibble mechanism, Higgs–Kibble mechanism by Abdus Salam and ABEGHHK’tH mechanism (for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, and ‘t Hooft) by Peter Higgs.”

Those who don’t get the fame don’t get the rewards. The scientists who get less recognition than they deserve get fewer grants and worse positions, losing out on the career outcomes that the person famous for the discovery gets, even if the less-recognized scientist made the discovery first.

…at least, that’s the usual story.

You can start to see the problem when you notice a contradiction: if a discovery has already been made, what would bring someone to re-make it?

Sometimes, people actually “steal” discoveries, finding something that isn’t widely known and re-publishing it without acknowledging the author. More often, though, the re-discoverer genuinely didn’t know. That’s because, in the real world, we don’t all know about a discovery as soon as it’s made. It has to be communicated.

At minimum, this means you need enough time to finish ironing out the kinks of your idea, write up a paper, and disseminate it. In the days before the internet, dissemination might involve mailing pre-prints to universities across the ocean. It’s relatively easy, in such a world, for two people to get started discovering the same thing, write it up, and even publish it before they learn about the other person’s work.

Sometimes, though, something gets rediscovered long after the original paper should have been available. In those cases, the problem isn’t time, it’s reach. Maybe the original paper was written in a way that hid its implications. Maybe it was published in a way only accessible to a smaller community: either a smaller part of the world, like papers that were only available to researchers in the USSR, or a smaller research community. Maybe the time hadn’t come yet, and the whole reason why the result mattered had yet to really materialize.

For a result like that, a lack of citations isn’t really the problem. Rather than someone who struggles because their work is overlooked, these are people whose work is overlooked, in a sense, because they are struggling: because their work is having a smaller impact on the work of others. Acknowledging them later can do something, but it can’t change the fact that this was work published for a smaller community, yielding smaller rewards.

And ultimately, it isn’t just priority we care about, but impact. While the first European to make contact with the New World might have been Erik the Red, we don’t call the massive exchange of plants and animals between the Old and New World the “Red Exchange”. Erik the Red being “first” matters much less, historically speaking, than Columbus changing the world. Similarly, in science, being the first to discover something is meaningless if that discovery doesn’t change how other people do science, and the person who manages to cause that change is much more valuable than someone who does the same work but doesn’t manage the same reach.

Am I claiming that it’s fair when scientists get famous for other peoples’ discoveries? No, it’s definitely not fair. It’s not fair because most of the reasons one might have lesser reach aren’t under one’s control. Soviet scientists (for the most part) didn’t choose to be based in the USSR. People who make discoveries before they become relevant don’t choose the time in which they were born. And while you can get better at self-promotion with practice, there’s a limited extent to which often-reclusive scientists should be blamed for their lack of social skills.

What I am claiming is that addressing this isn’t a matter of scrupulously citing the “original” discoverer after the fact. That’s a patch, and a weak one. If we want to get science closer to the ideal, where each discovery only has to be made once, then we need to work to increase reach for everyone. That means finding ways to speed up publication, to let people quickly communicate preliminary ideas with a wide audience and change the incentives so people aren’t penalized when others take up those ideas. It means enabling conversations between different fields and sub-fields, building shared vocabulary and opportunities for dialogue. It means making a community that rewards in-person hand-shaking less and careful online documentation more, so that recognition isn’t limited to the people with the money to go to conferences and the social skills to schmooze their way through them. It means anonymity when possible, and openness when we can get away with it.

Lack of recognition and redundant effort are both bad, and they both stem from the same failures to communicate. Instead of fighting about who deserves fame, we should work to make sure that science is truly global and truly universal. We can aim for a future where no-one’s contribution goes unrecognized, and where anything that is known to one is known to all.

The Bystander Effect for Reviewers

I probably came off last week as a bit of an extreme “journal abolitionist”. This week, I wanted to give a couple caveats.

First, as a commenter pointed out, the main journals we use in my field are run by nonprofits. Physical Review Letters, the journal where we publish five-page papers about flashy results, is run by the American Physical Society. The Journal of High-Energy Physics, where we publish almost everything else, is run by SISSA, the International School for Advanced Studies in Trieste. (SISSA does use Springer, a regular for-profit publisher, to do the actual publishing.)

The journals are also funded collectively, something I pointed out here before but might not have been obvious to readers of last week’s post. There is an agreement, SCOAP3, where research institutions band together to pay the journals. Authors don’t have to pay to publish, and individual libraries don’t have to pay for subscriptions.

And this is a lot better than the situation in other fields, yeah! Though I’d love to quantify how much. I haven’t been able to find a detailed breakdown, but SCOAP3 pays around 1200 EUR per article published. What I’d like to do (but not this week) is to compare this to what other fields pay, as well as to publishing that doesn’t have the same sort of trapped audience, and to online-only free journals like SciPost. (For example, publishing actual physical copies of journals at this point is sort of a vanity thing, so maybe we should compare costs to vanity publishers?)

Second, there’s reviewing itself. Even without traditional journals, one might still want to keep peer review.

What I wanted to understand last week was what peer review does right now, in my field. We read papers fresh off the arXiv, before they’ve gone through peer review. Authors aren’t forced to update the arXiv with the journal version of their paper, if they want another version, even if that version was rejected by the reviewers, then they’re free to do so, and most of us wouldn’t notice. And the sort of in-depth review that happens in peer review also happens without it. When we have journal clubs and nominate someone to present a recent paper, or when we try to build on a result or figure out why it contradicts something we thought we knew, we go through the same kind of in-depth reading that (in the best cases) reviewers do.

But I think I’ve hit upon something review does that those kinds of informal things don’t. It gets us to speak up about it.

I presented at a journal club recently. I read through a bombastic new paper, figured out what I thought was wrong with it, and explained it to my colleagues.

But did I reach out to the author? No, of course not, that would be weird.

Psychologists talk about the bystander effect. If someone collapses on the street, and you’re the only person nearby, you’ll help. If you’re one of many, you’ll wait and see if someone else helps instead.

I think there’s a bystander effect for correcting people. If someone makes a mistake and publishes something wrong, we’ll gripe about it to each other. But typically, we won’t feel like it’s our place to tell the author. We might get into a frustrating argument, there wouldn’t be much in it for us, and it might hurt our reputation if the author is well-liked.

(People do speak up when they have something to gain, of course. That’s why when you write a paper, most of the people emailing you won’t be criticizing the science: they’ll be telling you you need to cite them.)

Peer review changes the expectations. Suddenly, you’re expected to criticize, it’s your social role. And you’re typically anonymous, you don’t have to worry about the consequences. It becomes a lot easier to say what you really think.

(It also becomes quite easy to say lazy stupid things, of course. This is why I like setups like SciPost, where reviews are made public even when the reviewers are anonymous. It encourages people to put some effort in, and it means that others can see that a paper was rejected for bad reasons and put less stock in the rejection.)

I think any new structure we put in place should keep this feature. We need to preserve some way to designate someone a critic, to give someone a social role that lets them let loose and explain why someone else is wrong. And having these designated critics around does help my field. The good criticisms get implemented in the papers, the authors put the new versions up on arXiv. Reviewing papers for journals does make our science better…even if none of us read the journal itself.

Why Journals Are Sticky

An older professor in my field has a quirk: every time he organizes a conference, he publishes all the talks in a conference proceeding.

In some fields, this would be quite normal. In computer science, where progress flows like a torrent, new developments are announced at conferences long before they have the time to be written up carefully as a published paper. Conference proceedings are summaries of what was presented at the conference, published so that anyone can catch up on the new developments.

In my field, this is rarer. A few results at each conference will be genuinely new, never-before-published discoveries. Most, though, are talks on older results, results already available online. Writing them up again in summarized form as a conference proceeding seems like a massive waste of time.

The cynical explanation is that this professor is doing this for the citations. Each conference proceeding one of his students publishes is another publication on their CV, another work that they can demand people cite whenever someone uses their ideas or software, something that puts them above others’ students without actually doing any extra scientific work.

I don’t think that’s how this professor thinks about it, though. He certainly cares about his students’ careers, and will fight for them to get cited as much as possible. But he asks everyone at the conference to publish a proceeding, not just his students. I think he’d argue that proceedings are helpful, that they can summarize papers in new ways and make them more accessible. And if they give everyone involved a bit more glory, if they let them add new entries to their CV and get fancy books on their shelves, so much the better for everyone.

My guess is, he really believes something like that. And I’m fairly sure he’s wrong.

The occasional conference proceeding helps, but only because it makes us more flexible. Sometimes, it’s important to let others know about a new result that hasn’t been published yet, and we let conference proceedings go into less detail than a full published paper, so this can speed things up. Sometimes, an old result can benefit from a new, clearer explanation, which normally couldn’t be published without it being a new result (or lecture notes). It’s good to have the option of a conference proceeding.

But there is absolutely no reason to have one for every single talk at a conference.

Between the cynical reason and the explicit reason, there’s the banal one. This guy insists on conference proceedings because they were more useful in the past, because they’re useful in other fields, and because he’s been doing them himself for years. He insists on them because to him, they’re a part of what it means to be a responsible scientist.

And people go along with it. Because they don’t want to get into a fight with this guy, certainly. But also because it’s a bit of extra work that could give a bit of a career boost, so what’s the harm?

I think something similar to this is why academic journals still work the way they do.

In the past, journals were the way physicists heard about new discoveries. They would get each edition in the mail, and read up on new developments. The journal needed to pay professional copyeditors and printers, so they needed money, and they got that money from investors by being part of for-profit companies that sold shares.

Now, though, physicists in my field don’t read journals. We publish our new discoveries online on a non-profit website, formatting them ourselves with software that uses the same programming skills we use in the rest of our professional lives. We then discuss the papers in email threads and journal club meetings. When a paper is wrong, or missing something important, we tell the author, and they fix it.

Oh, and then after that we submit the papers to the same for-profit journals and the same review process that we used to use before we did all this, listing the journals that finally accept the papers on our CVs.

Why do we still do that?

Again, you can be cynical. You can accuse the journals of mafia-ish behavior, you can tie things back to the desperate need to publish in high-ranked journals to get hired. But I think the real answer is a bit more innocent, and human, than that.

Imagine that you’re a senior person in the field. You may remember the time before we had all of these nice web-based publishing options, when journals were the best way to hear about new developments. More importantly than that, though, you’ve worked with these journals. You’ve certainly reviewed papers for them, everyone in the field does that, but you may have also served as an editor, tracking down reviewers and handling communication between the authors and the journal. You’ve seen plenty of cases where the journal mattered, where tracking down the right reviewers caught a mistake or shot down a crackpot’s ambitions, where the editing cleaned something up or made a work more appear more professional. You think of the journals as having high standards, standards you have helped to uphold: when choosing between candidates for a job, you notice that one has several papers in Physical Review Letters, and remember papers you’ve rejected for not meeting what you intuited were that journal’s standards. To you, journals are a key part of being a responsible scientist.

Does any of that make journals worth it, though?

Well, that depends on costs. It depends on alternatives. It depends not merely on what the journals catch, but on how often they do it, and how much would have been caught on its own. It depends on whether the high standards you want to apply to job applicants are already being applied by the people who write their recommendation letters and establish their reputations.

And you’re not in a position to evaluate any of that, of course. Few people are, who don’t spend a ton of time thinking about scientific publishing.

And thus, for the non-senior people, there’s not much reason to push back. One hears a few lofty speeches about Elsevier’s profits, and dreams about the end of the big for-profit journals. But most people aren’t cut out to be crusaders or reformers, especially when they signed up to be scientists. Most people are content not to annoy the most respected people in their field by telling them that something they’ve spent an enormous amount of time on is now pointless. Most people want to be seen as helpful by these people, to not slack off on work like reviewing that they argue needs doing.

And most of us have no reason to think we know that much better, anyway. Again, we’re scientists, not scientific publishing experts.

I don’t think it’s good practice to accuse people of cognitive biases. Everyone thinks they have good reasons to believe what they believe, and the only way to convince them is to address those reasons.

But the way we use journals in physics these days is genuinely baffling. It’s hard to explain, it’s the kind of thing people have been looking quizzically at for years. And this kind of explanation is the only one I’ve found that matches what I’ve seen. Between the cynical explanation and the literal arguments, there’s the basic human desire to do what seems like the responsible thing. That tends to explain a lot.

Grad Students Don’t Have Majors

A pet peeve of mine:

Suppose you’re writing a story, and one of your characters is studying for a PhD in linguistics. You could call them a grad student or a PhD student, a linguistics student or even just a linguist. But one thing you absolutely shouldn’t call them is a linguistics major.

Graduate degrees, from the PhD to medical doctors to masters degrees, don’t have majors. Majors are a very specific concept, from a very specific system: one that only applies to undergraduate degrees, and even there is uncommon to unheard of in most of the world.

You can think of “major” as short for “major area of study”. In many universities in the US, bachelor’s degree students enter not as students of a particular topic, but as “undecided” students. They then have some amount of time to choose a major. Majors define some of your courses, but not all of them. You can also have “minors”, minor areas of study where you take a few courses from another department, and you typically have to take some number of general courses from other departments as well. Overall, the US system for bachelor’s students is quite flexible. The idea is that students can choose from a wide range of courses offered by different departments at a university, focusing on one department’s program but sampling from many. The major is your major focus, but not your only focus.

Basically no other degree works this way.

In Europe, bachelor’s degree students sign up as students of a specific department. By default, all of their courses will be from that department. If you have to learn more math, or writing skills, then normally your department will have its own math or writing course, focused on the needs of their degree. It can be possible to take courses from other departments, but it’s not common and it’s often not easy, sometimes requiring special permission. You’re supposed to have done your general education as a high school student, and be ready to focus on a particular area.

Graduate degrees in the US also don’t work this way. A student in medical school or law school isn’t a medicine major or a law major, they’re a med student or a law student. They typically don’t take courses from the rest of the university at that point, just from the med school or the law school. A student studying for an MBA (Master’s in Business Administration) is similarly a business student, not the business major they might have been during their bachelor’s studies. And a student studying for a PhD is a PhD student, a student of a specific department. They might still have the option of taking classes outside of that department (for example, I took classes in science communication). But these are special exceptions. A linguistics PhD student will take almost all of their classes from the linguistics department, a physics PhD student will take almost all of their classes from the physics department. They don’t have majors.

So the next time you write a story with people with advanced degrees, keep this in mind. Majors are a thing for US bachelor’s degrees, and a few similar systems. Anything else, don’t call it a major!

Toy Models

In academia, scientists don’t always work with what they actually care about. A lot of the time, they use what academics call toy models. A toy model can be a theory with simpler mathematics than the theories that describe the real world, but it can also be something that is itself real, just simpler or easier to work with, like nematodes, fruit flies, or college students.

Some people in industry seem to think this is all academics do. I’ve seen a few job ads that emphasize experience dealing with “real-world data”, and a few people skeptical that someone used to academia would be able to deal with the messy challenges of the business world.

There’s a grain of truth to this, but I don’t think industry has a monopoly on mess. To see why, let’s think about how academics write computer code.

There are a lot of things that one is in-principle supposed to do to code well, and most academics do none of them. Good code has test suites, so that if you change something you can check whether it still works by testing it on all the things that could go wrong. Good code is modular, with functions doing specific things and re-used whenever appropriate. Good code follows shared conventions, so that others can pick up your code and understand how you did it.

Some academics do these things, for example those who build numerical simulations on supercomputers. But for most academics, coding best-practices range from impractical to outright counterproductive. Testing is perhaps the clearest example. To design a test suite, you have to have some idea what kinds of things your code will run into, what kind of input you expect what the output is supposed to be. Many academic projects, though, are the first of their kind. Academics code up something to do a calculation nobody has done before, not knowing the result, or they make code to analyze a dataset nobody has worked with before. By the time they understand the problem well enough to write a test suite, they’ve already solved the problem, and they’re on to the next project, which may need something totally different.

From the perspective of these academics, if you have a problem well-defined enough that you can build a test suite, well enough that you can have stable conventions and reusable functions…then you have a toy model, not a real problem from the real world.

…and of course, that’s not quite fair either, right?

The truth is, academics and businesspeople want to work with toy models. Toy models are well-behaved, and easy, and you can do a lot with them. The real world isn’t a toy model…but it can be, if you make it one.

This means planning your experiments, whether in business or in science. It means making sure the data you gather is labeled and organized before you begin. It means coming up with processes, and procedures, and making as much of the work as possible a standardized, replicable thing. That’s desirable regardless, whether you’re making a consistent product instead of artisanal one-offs or a well-documented scientific study that another team can replicate.

Academia and industry both must handle mess. They handle different kinds of mess in different circumstances, and manage it in different ways, and this can be a real challenge for someone trying to go from one world to another. But neither world is intrinsically messier or cleaner. Nobody has a monopoly on toy models.

The “Who” of Fixing Academic Publishing

I was on the debate team in high school. There’s a type of debate, called Policy, where one team proposes a government policy and the other team argues the policy is bad. The rules of Policy debate don’t say who the debaters are pretending to be: they could be congresspeople, cabinet members, or staff at a think tank. This creates ambiguity, and nerds are great at exploiting ambiguity. A popular strategy was to argue that the opponents had a perfectly good policy, but were wrong about who should implement it. This had reasonable forms (no, congress does not have the power to do X) but could also get very silly (the crux of one debate was whether the supreme court or the undersecretary of the TSA was the best authority to usher in a Malthusian dictatorship). When debating policy, “who” could be much more important than “what”.

Occasionally, when I see people argue that something needs to be done, I ask myself this question. Who, precisely, should do it?

Recently, I saw a tweet complaining about scientific publishing. Physicists put their work out for free on arXiv.org, then submit that work to journals, which charge huge fees either to the scientists themselves or to libraries that want access to the work. It’s a problem academics complain about frequently, but usually we act like it’s something we should fix ourselves, a kind of grassroots movement to change our publication and hiring culture.

This tweet, surprisingly, didn’t do that. Instead, it seemed to have a different “who” in mind. The tweet argued that the stranglehold of publishers like Elsevier on academic publishing is a waste of taxpayer money. The implication, maybe intended maybe not, is that the problem should be fixed by the taxpayers: that is, by the government.

Which in turn got me thinking, what could that look like?

I could imagine a few different options, from the kinds of things normal governments do to radical things that would probably never happen.

First, the most plausible strategy: collective negotiation. Particle physicists don’t pay from our own grants to publish papers, and we don’t pay to read them. Instead, we have a collective agreement, called SCOAP3, where the big institutions pay together each year to guarantee open access. The University of California system tried to negotiate a similar agreement a few years back, not just for physicists but for all fields. You could imagine governments leaning on this, with the university systems of whole countries negotiating a fixed payment. The journals would still be getting paid, but less.

Second, less likely but not impossible: governments could use the same strategies against the big publishers that they use against other big companies. This could be antitrust action (if you have to publish in Nature to get hired, are they really competing with anybody?), or even some kind of price controls. The impression I get is that when governments do try to change scientific publishing they usually do it via restrictions on the scientists (such as requiring them to publish open-access), while this would involve restrictions on the publishers.

Third, governments could fund alternative institutions to journals. They could put more money into websites like arXiv.org and its equivalents in other fields or fund an alternate review process to vet papers like journal referees do. There are existing institutions they could build on, or they could create their own.

Fourth, you could imagine addressing the problem on the job market side, with universities told not to weigh the prestige of journals when considering candidates. This seems unlikely to happen, and that’s probably a good thing, because it’s very micromanagey. Still, I do think that both grants and jobs could do with less time and effort spent attempting to vet candidates and more explicit randomness.

Fifth, you could imagine governments essentially opting out of the game altogether. They could disallow spending any money from publicly funded grants or universities on open-access fees or subscription fees, pricing most scientists out of the journal system. Journals would either have to radically lower their prices so that scientists could pay for them out of pocket, or more likely go extinct. This does have the problem that if only some countries did it, their scientists would have a harder time in other countries’ job markets. And of course, many critics of journals just want the journals to make less obscene profits, and not actually go extinct.

Most academics I know agree that something is deeply wrong with how academic journals work. While the situation might be solved at the grassroots level, it’s worth imagining what governments might do. Realistically, I don’t expect them to do all that much. But stranger things have gotten political momentum before.

Musing on Application Fees

A loose rule of thumb: PhD candidates in the US are treated like students. In Europe, they’re treated like employees.

This does exaggerate things a bit. In both Europe and the US, PhD candidates get paid a salary (at least in STEM). In both places, PhD candidates count as university employees, if sometimes officially part-time ones, with at least some of the benefits that entails.

On the other hand, PhD candidates in both places take classes (albeit more classes in the US). Universities charge both for tuition, which is in turn almost always paid by their supervisor’s grants or department, not by them. Both aim for a degree, capped off with a thesis defense.

But there is a difference. And it’s at its most obvious in how applications work.

In Europe, PhD applications are like job applications. You apply to a particular advisor, advertising a particular kind of project. You submit things like a CV, cover letter, and publication list, as well as copies of your previous degrees.

In the US, PhD applications are like applications to a school. You apply to the school, perhaps mentioning an advisor or topic you are interested in. You submit things like essays, test scores, and transcripts. And typically, you have to pay an application fee.

I don’t think I quite appreciated, back when I applied for PhD programs, just how much those fees add up to. With each school charging a fee in the $100 range, and students commonly advised to apply to ten or so schools, applying to PhD programs in the US can quickly get unaffordable for many. Schools do offer fee waivers under certain conditions, but the standards vary from school to school. Most don’t seem to apply to non-Americans, so if you’re considering a US PhD from abroad be aware that just applying can be an expensive thing to do.

Why the fee? I don’t really know. The existence of application fees, by itself, isn’t a US thing. If you want to get a Master’s degree from the University of Copenhagen and you’re coming from outside Europe, you have to pay an application fee of roughly the same size that US schools charge.

Based on that, I’d guess part of the difference is funding. It costs something for a university to process an application, and governments might be willing to cover it for locals (in the case of the Master’s in Copenhagen) or more specifically for locals in need (in the US PhD case). I don’t know whether it makes sense for that cost to be around $100, though.

It’s also an incentive, presumably. Schools don’t want too many applicants, so they attach a fee so only the most dedicated people apply.

Jobs don’t typically have an application fee, and I think it would piss a lot of people off if they did. Some jobs get a lot of applicants, enough that bigger and more well-known companies in some places use AI to filter applications. I have to wonder if US PhD schools are better off in this respect. Does charging a fee mean they have a reasonable number of applications to deal with? Or do they still have to filter through a huge pile, with nothing besides raw numbers to pare things down? (At least, because of the “school model” with test scores, they have some raw numbers to use.)

Overall, coming at this with a “theoretical physicist mentality”, I have to wonder if any of this is necessary. Surely there’s a way to make it easy for students to apply, and just filter them down to the few you want to accept? But the world is of course rarely that simple.

Beyond Elliptic Polylogarithms in Oaxaca

Arguably my biggest project over the last two years wasn’t a scientific paper, a journalistic article, or even a grant application. It was a conference.

Most of the time, when scientists organize a conference, they do it “at home”. Either they host the conference at their own university, or rent out a nearby event venue. There is an alternative, though. Scattered around the world, often in out-of-the way locations, are places dedicated to hosting scientific conferences. These places accept applications each year from scientists arguing that their conference would best serve the place’s scientific mission.

One of these places is the Banff International Research Station in Alberta, Canada. Since 2001, Banff has been hosting gatherings of mathematicians from around the world, letting them focus on their research in an idyllic Canadian ski resort.

If you don’t like skiing, though, Banff still has you covered! They have “affiliate centers” elsewhere, with one elsewhere in Canada, one in China, two on the way in India and Spain…and one, that particularly caught my interest, in Oaxaca, Mexico.

Back around this time of year in 2022, I started putting a proposal together for a conference at the Casa Mathemática Oaxaca. The idea would be a conference discussing the frontier of the field, how to express the strange mathematical functions that live in Feynman diagrams. I assembled a big team of co-organizers, five in total. At the time, I wasn’t sure whether I could find a permanent academic job, so I wanted to make sure there were enough people involved that they could run the conference without me.

Followers of the blog know I did end up finding that permanent job…only to give it up. In the end, I wasn’t able to make it to the conference. But my four co-organizers were (modulo some delays in the Houston airport). The conference was this week, with the last few talks happening over the next few hours.

I gave a short speech via Zoom at the beginning of the conference, a mix of welcome and goodbye. Since then I haven’t had the time to tune in to the talks, but they’re good folks and I suspect they’re having good discussions.

I do regret that, near the end, I wasn’t able to give the conference the focus it deserved. There were people we really hoped to have, but who couldn’t afford the travel. I’d hoped to find a source of funding that could support them, but the plan fell through. The week after Amplitudes 2024 was also a rough time to have a conference in this field, with many people who would have attended not able to go to both. (At least they weren’t the same week, thanks to some flexibility on the part of the Amplitudes organizers!)

Still, it’s nice to see something I’ve been working on for two years finally come to pass, to hopefully stir up conversations between different communities and give various researchers a taste of one of Mexico’s most beautiful places. I still haven’t been to Oaxaca yet, but I suspect I will eventually. Danish companies do give at minimum five weeks of holiday per year, so I should get a chance at some point.

The Impact of Jim Simons

The obituaries have been weirdly relevant lately.

First, a couple weeks back, Daniel Dennett died. Dennett was someone who could have had a huge impact on my life. Growing up combatively atheist in the early 2000’s, Dennett seemed to be exploring every question that mattered: how the semblance of consciousness could come from non-conscious matter, how evolution gives rise to complexity, how to raise a new generation to grow beyond religion and think seriously about the world around them. I went to Tufts to get my bachelor’s degree based on a glowing description he wrote in the acknowledgements of one of his books, and after getting there, I asked him to be my advisor.

(One of three, because the US education system, like all good games, can be min-maxed.)

I then proceeded to be far too intimidated to have a conversation with him more meaningful than “can you please sign my registration form?”

I heard a few good stories about Dennett while I was there, and I saw him debate once. I went into physics for my PhD, not philosophy.

Jim Simons died on May 10. I never spoke to him at all, not even to ask him to sign something. But he had a much bigger impact on my life.

I began my PhD at SUNY Stony Brook with a small scholarship from the Simons Foundation. The university’s Simons Center for Geometry and Physics had just opened, a shining edifice of modern glass next to the concrete blocks of the physics and math departments.

For a student aspiring to theoretical physics, the Simons Center virtually shouted a message. It taught me that physics, and especially theoretical physics, was something prestigious, something special. That if I kept going down that path I could stay in that world of shiny new buildings and daily cookie breaks with the occasional fancy jar-based desserts, of talks by artists and a café with twenty-dollar lunches (half-price once a week for students, the only time we could afford it, and still about twice what we paid elsewhere on campus). There would be garden parties with sushi buffets and late conference dinners with cauliflower steaks and watermelon salads. If I was smart enough (and I longed to be smart enough), that would be my future.

Simons and his foundation clearly wanted to say something along those lines, if not quite as filtered by the stars in a student’s eyes. He thought that theoretical physics, and research more broadly, should be something prestigious. That his favored scholars deserved more, and should demand more.

This did have weird consequences sometimes. One year, the university charged us an extra “academic excellence fee”. The story we heard was that Simons had demanded Stony Brook increase its tuition in order to accept his donations, so that it would charge more similarly to more prestigious places. As a state university, Stony Brook couldn’t do that…but it could add an extra fee. And since PhD students got their tuition, but not fees, paid by the department, we were left with an extra dent in our budgets.

The Simons Foundation created Quanta Magazine. If the Simons Center used food to tell me physics mattered, Quanta delivered the same message to professors through journalism. Suddenly, someone was writing about us, not just copying press releases but with the research and care of an investigative reporter. And they wrote about everything: not just sci-fi stories and cancer cures but abstract mathematics and the space of quantum field theories. Professors who had spent their lives straining to capture the public’s interest suddenly were shown an audience that actually wanted the real story.

In practice, the Simons Foundation made its decisions through the usual experts and grant committees. But the way we thought about it, the decisions always had a Jim Simons flavor. When others in my field applied for funding from the Foundation, they debated what Simons would want: would he support research on predictions for the LHC and LIGO? Or would he favor links to pure mathematics, or hints towards quantum gravity? Simons Collaboration Grants have an enormous impact on theoretical physics, dwarfing many other sources of funding. A grant funds an army of postdocs across the US, shifting the priorities of the field for years at a time.

Denmark has big foundations that have an outsize impact on science. Carlsberg, Villum, and the bigger-than-Denmark’s GDP Novo Nordisk have foundations with a major influence on scientific priorities. But Denmark is a country of six million. It’s much harder to have that influence on a country of three hundred million. Despite that, Simons came surprisingly close.

While we did like to think of the Foundation’s priorities as Simons’, I suspect that it will continue largely on the same track without him. Quanta Magazine is editorially independent, and clearly puts its trust in the journalists that made it what it is today.

I didn’t know Simons, I don’t think I even ever smelled one of his famous cigars. Usually, that would be enough to keep me from writing a post like this. But, through the Foundation, and now through Quanta, he’s been there with me the last fourteen years. That’s worth a reflection, at the very least.

Peer Review in Post-scarcity Academia

I posted a link last week to a dialogue written by a former colleague of mine, Sylvain Ribault. Sylvain’s dialogue is a summary of different perspectives on academic publishing. Unlike certain more famous dialogues written by physicists, Sylvain’s account doesn’t have a clear bias: he’s trying to set out the concerns different stakeholders might have and highlight the history of the subject, without endorsing one particular approach as the right one.

The purpose of such a dialogue is to provoke thought, and true to its purpose, the dialogue got me thinking.

Why do peer review? Why do we ask three or so people to read every paper, comment on it, and decide whether it should be published? While one can list many reasons, they seem to fall into two broad groups:

  1. We want to distinguish better science from worse science. We want to reward the better scientists with jobs and grants and tenure. To measure whether scientists are better, we want to see whether they publish more often in the better journals. We then apply those measures on up the chain, funding universities more when they have better scientists, and supporting grant programs that bring about better science.
  2. We want published science to be true. We want to make sure that when a paper is published that the result is actually genuine, free both from deception and from mistakes. We want journalists and the public to know which scientific results are valid, and we want scientists to know what results they can base their own research on.

The first set of goals is a product of scarcity. If we could pay every scientist and fund every scientific project with no cost, we wouldn’t need to worry so much about better and worse science. We’d fund it all and see what happens. The second set of goals is more universal: the whole point of science is to find out the truth, and we want a process that helps to achieve that.

My approach to science is to break problems down. What happens if we had only the second set of concerns, and not the first?

Well, what happens to hobbyists?

I’ve called hobby communities a kind of “post-scarcity academia”. Hobbyists aren’t trying to get jobs doing their hobby or get grants to fund it. They have their day jobs, and research their hobby as a pure passion project. There isn’t much need to rank which hobbyists are “better” than others, but they typically do care about whether what they write is true. So what happens when it’s not?

Sometimes, not much.

My main hobby community was Dungeons and Dragons. In a game with over 50 optional rulebooks covering multiple partially compatible-editions, there were frequent arguments about what the rules actually meant. Some were truly matters of opinion, but some were true misunderstandings, situations where many people thought a rule worked a certain way until they heard the right explanation.

One such rule regarded a certain type of creature called a Warbeast. Warbeasts, like Tolkien’s Oliphaunts, are “upgraded” versions of more normal wild animals, bred and trained for war. There were rules to train a Warbeast, and people interpreted these rules differently: some thought you could find an animal in the wild and train it to become a Warbeast, others thought the rules were for training a creature that was already a Warbeast to fight.

I supported the second interpretation: you can train an existing Warbeast, you can’t train a wild animal to make it into a Warbeast. As such, keep in mind, I’m biased. But every time I explained the reasoning (pointing out that the text was written in the context of an earlier version of the game, and how the numbers in it matched up with that version), people usually agreed with me. And yet, I kept seeing people use the other interpretation. New players would come in asking how to play the game, and get advised to go train wild animals to make them into Warbeasts.

Ok, so suppose the Dungeons and Dragons community had a peer review process. Would that change anything?

Not really! The wrong interpretation was popular. If whoever first proposed it got three random referees, there’s a decent chance none of them would spot the problem. In good science, sometimes the problems with an idea are quite subtle. Referees will spot obvious issues (and not even all of those!), but only the most diligent review (which sometimes happens in mathematics, and pretty much nowhere else) can spot subtle flaws in an argument. For an experiment, you sometimes need more than that: not just a review, but an actual replication.

What would have helped the Dungeons and Dragons community? Not peer review, but citations.

Suppose that, every time someone suggested you could train a wild animal to make it a Warbeast, they had to link to the first post suggesting you could do this. Then I could go to that first post, and try to convince the author that my interpretation was correct. If I succeeded, the author could correct their post, and then every time someone followed one of these citation links it would tell them the claim was wrong.

Academic citations don’t quite work like this. But the idea is out there. People have suggested letting anyone who wants to review a paper, and publishing the reviews next to the piece like comments on a blog post. Sylvain’s dialogue mentions a setup like this, and some of the risks involved.

Still, a setup like that would have gone a long way towards solving the problem for the Dungeons and Dragons community. It has me thinking that something like that is worth exploring.