Some FAQ for Microsoft’s Majorana 1 Chip

Recently, Microsoft announced a fancy new quantum computing chip called Majorana 1. I’ve noticed quite a bit of confusion about what they actually announced, and while there’s a great FAQ page about it on the quantum computing blog Shtetl Optimized, the post there aims at a higher level, assuming you already know the basics. You can think of this post as a complement to that one, that tries to cover some basic things Shtetl Optimized took for granted.

Q: In the announcement, Microsoft said:

“It leverages the world’s first topoconductor, a breakthrough type of material which can observe and control Majorana particles to produce more reliable and scalable qubits, which are the building blocks for quantum computers.”

That sounds wild! Are they really using particles in a computer?

A: All computers use particles. Electrons are particles!

Q: You know what I mean!

A: You’re asking if these are “particle physics” particles, like the weird types they try to observe at the LHC?

No, they’re not.

Particle physicists use a mathematical framework called quantum field theory, where particles are ripples in things called quantum fields that describe properties of the universe. But they aren’t the only people to use that framework. Instead of studying properties of the universe you can study properties of materials, weird alloys and layers of metal and crystal that do weird and useful things. The properties of these materials can be approximately described with the same math, with quantum fields. Just as the properties of the universe ripple to produce particles, these properties of materials ripple to produce what are called quasiparticles. Ultimately, these quasiparticles come down to movements of ordinary matter, usually electrons in the original material. They’re just described with a kind of math that makes them look like their own particles.

Q: So, what are these Majorana particles supposed to be?

A: In quantum field theory, most particles come with an antimatter partner. Electrons, for example, have partners called positrons, with a positive electric charge instead of a negative one. These antimatter partners have to exist due to the math of quantum field theory, but there is a way out: some particles are their own antimatter partner, letting one particle cover both roles. This happens for some “particle physics particles”, but all the examples we’ve found are a type of particle called a “boson”, particles related to forces. In 1937, the physicist Ettore Majorana figured out the math you would need to make a particle like this that was a fermion instead, the other main type of particle that includes electrons and protons. So far, we haven’t found one of these Majorana fermions in nature, though some people think the elusive neutrino particles could be an example. Others, though, have tried instead to find a material described by Majorana’s theory. This should in principle be easier, you can build a lot of different materials after all. But it’s proven quite hard for people to do. Back in 2018, Microsoft claimed they’d managed this, but had to retract the claim. This time, they seem more confident, though the scientific community is still not convinced.

Q: And what’s this topoconductor they’re talking about?

A: Topoconductor is short for topological superconductor. Superconductors are materials that conduct electricity much better than ordinary metals.

Q: And, topological means? Something about donuts, right?

A: If you’ve heard anything about topology, you’ve heard that it’s a type of mathematics where donuts are equivalent to coffee cups. You might have seen an animation of a coffee cup being squished and mushed around until the ring of the handle becomes the ring of a donut.

This isn’t actually the important part of topology. The important part is that, in topology, a ball is not equivalent to a donut.

Topology is the study of which things can change smoothly into one another. If you want to change a donut into a ball, you have to slice through the donut’s ring or break the surface inside. You can’t smoothly change one to another. Topologists study shapes of different kinds of things, figuring out which ones can be changed into each other smoothly and which can’t.

Q: What does any of that have to do with quantum computers?

A: The shapes topologists study aren’t always as simple as donuts and coffee cups. They can also study the shape of quantum fields, figuring out which types of quantum fields can change smoothly into each other and which can’t.

The idea of topological quantum computation is to use those rules about what can change into each other to encode information. You can imagine a ball encoding zero, and a donut encoding one. A coffee cup would then also encode one, because it can change smoothly into a donut, while a box would encode zero because you can squash the corners to make it a ball. This helps, because it means that you don’t screw up your information by making smooth changes. If you accidentally drop your box that encodes zero and squish a corner, it will still encode zero.

This matters in quantum computing because it is very easy to screw up quantum information. Quantum computers are very delicate, and making them work reliably has been immensely challenging, requiring people to build much bigger quantum computers so they can do each calculation with many redundant backups. The hope is that topological superconductors would make this easier, by encoding information in a way that is hard to accidentally change.

Q: Cool. So does that mean Microsoft has the best quantum computer now?

A: The machine Microsoft just announced has only a single qubit, the quantum equivalent of just a single bit of computer memory. At this point, it can’t do any calculations. It can just be read, giving one or zero. The hope is that the power of the new method will let Microsoft catch up with companies that have computers with hundred of qubits, and help them arrive faster at the millions of qubits that will be needed to do anything useful.

Q: Ah, ok. But it sounds like they accomplished some crazy Majorana stuff at least, right?

A: Umm…

Read the Shtetl-Optimized FAQ if you want more details. The short answer is that this is still controversial. So far, the evidence they’ve made public isn’t enough to show that they found these Majorana quasiparticles, or that they made a topological superconductor. They say they have more recent evidence that they haven’t published yet. We’ll see.

2 thoughts on “Some FAQ for Microsoft’s Majorana 1 Chip

  1. Dan Elton's avatarDan Elton

    RE “The machine Microsoft just announced has only a single qubit”.

    Well, the press release says “Today, the company has placed eight topological qubits on a chip designed to scale to one million.”

    But I’m confused. The press release also talks about three wires forming an “H” and that having four Marojana modes which make one qubit. Chetan Nayak’s comment doesn’t mention 8 qubits anywhere (https://scottaaronson.blog/?p=8669#comment-2003328). Is it one or eight?

    Like

    Reply
    1. 4gravitons's avatar4gravitons Post author

      Weird! Even the sentence before that one says that they have demonstrated one qubit. If I had to guess, I’d say they’ve manufactured the hardware for eight but only turned on and measured one.

      Like

      Reply

Leave a comment! If it's your first time, it will go into moderation.