I have a short piece at Quanta Magazine this week, about a physics-y end of the world as we know it called vacuum decay.
For science-minded folks who want to learn a bit more: I have a sentence in the article mentioning other uncertainties. In case you’re curious what those uncertainties are:
Gamma () here is the decay rate, its inverse gives the time it takes for a cubic gigaparsec of space to experience vacuum decay. The three uncertainties are from experiments, the uncertainties of our current knowledge of the Higgs mass, top quark mass, and the strength of the strong force.
Occasionally, you see futurology-types mention “uncertainties in the exponent” to argue that some prediction (say, how long it will take till we have human-level AI) is so uncertain that estimates barely even make sense: it might be 10 years, or 1000 years. I find it fun that for vacuum decay, because of that , there is actually uncertainty in the exponent! Vacuum decay might happen in as few as
years or as many as
years, and that’s the result of an actual, reasonable calculation!
For physicist readers, I should mention that I got a lot out of reading some slides from a 2016 talk by Matthew Schwartz. Not many details of the calculation made it into the piece, but the slides were helpful in dispelling a few misconceptions that could have gotten into the piece. There’s an instinct to think about the situation in terms of the energy, to think about how difficult it is for quantum uncertainty to get you over the energy barrier to the next vacuum. There are methods that sort of look like that, if you squint, but that’s not really how you do the calculation, and there end up being a lot of interesting subtleties in the actual story. There were also a few numbers that it was tempting to put on the plots in the article, but turn out to be gauge dependent!
Another thing I learned from those slides how far you can actually take the uncertainties mentioned above. The higher-energy Higgs vacuum is pretty dang high-energy, to the point where quantum gravity effects could potentially matter. And at that point, all bets are off. The calculation, with all those nice uncertainties, is a calculation within the framework of the Standard Model. All of the things we don’t yet know about high-energy physics, especially quantum gravity, could freely mess with this. The universe as we know it could still be long-lived, but it could be a lot shorter-lived as well. That in turns makes this calculation a lot more of a practice-ground to hone techniques, rather than an actual estimate you can rely on.


