LHC Black Hole Reassurance: The Professional Version

A while back I wrote a post trying to reassure you that the Large Hadron Collider cannot create a black hole that could destroy the Earth. If you’re the kind of person who is worried about this kind of thing, you’ve probably heard a variety of arguments: that it hasn’t happened yet, despite the LHC running for quite some time, that it didn’t happen before the LHC with cosmic rays of comparable energy, and that a black hole that small would quickly decay due to Hawking radiation. I thought it would be nice to give a different sort of argument, a back-of-the-envelope calculation you can try out yourself, showing that even if a black hole was produced using all of the LHC’s energy and fell directly into the center of the Earth, and even if Hawking radiation didn’t exist, it would still take longer than the lifetime of the universe to cause any detectable damage. Modeling the black hole as falling through the Earth and just slurping up everything that falls into its event horizon, it wouldn’t even double in size before the stars burn out.

That calculation was extremely simple by physics standards. As it turns out, it was too simple. A friend of mine started thinking harder about the problem, and dug up this paper from 2008: Astrophysical implications of hypothetical stable TeV-scale black holes.

Before the LHC even turned on, the experts were hard at work studying precisely this question. The paper has two authors, Steve Giddings and Michelangelo Mangano. Giddings is an expert on the problem of quantum gravity, while Mangano is an expert on LHC physics, so the two are exactly the dream team you’d ask for to answer this question. Like me, they pretend that black holes don’t decay due to Hawking radiation, and pretend that one falls to straight from the LHC to the center of the Earth, for the most pessimistic possible scenario.

Unlike me, but like my friend, they point out that the Earth is not actually a uniform sphere of matter. It’s made up of particles: quarks arranged into nucleons arranged into nuclei arranged into atoms. And a black hole that hits a nucleus will probably not just slurp up an event horizon-sized chunk of the nucleus: it will slurp up the whole nucleus.

This in turn means that the black hole starts out growing much more fast. Eventually, it slows down again: once it’s bigger than an atom, it starts gobbling up atoms a few at a time until eventually it is back to slurping up a cylinder of the Earth’s material as it passes through.

But an atom-sized black hole will grow faster than an LHC-energy-sized black hole. How much faster is estimated in the Giddings and Mangano paper, and it depends on the number of dimensions. For eight dimensions, we’re safe. For fewer, they need new arguments.

Wait a minute, you might ask, aren’t there only four dimensions? Is this some string theory nonsense?

Kind of, yes. In order for the LHC to produce black holes, gravity would need to have a much stronger effect than we expect on subatomic particles. That requires something weird, and the most plausible such weirdness people considered at the time were extra dimensions. With extra dimensions of the right size, the LHC might have produced black holes. It’s that kind of scenario that Giddings and Mangano are checking: they don’t know of a plausible way for black holes to be produced at the LHC if there are just four dimensions.

For fewer than eight dimensions, though, they have a problem: the back-of-the-envelope calculation suggests black holes could actually grow fast enough to cause real damage. Here, they fall back on the other type of argument: if this could happen, would it have happened already? They argue that, if the LHC could produce black holes in this way, then cosmic rays could produce black holes when they hit super-dense astronomical objects, such as white dwarfs and neutron stars. Those black holes would eat up the white dwarfs and neutron stars, in the same way one might be worried they could eat up the Earth. But we can observe that white dwarfs and neutron stars do in fact exist, and typically live much longer than they would if they were constantly being eaten by miniature black holes. So we can conclude that any black holes like this don’t exist, and we’re safe.

If you’ve got a smattering of physics knowledge, I encourage you to read through the paper. They consider a lot of different scenarios, much more than I can summarize in a post. I don’t know if you’ll find it reassuring, since they may not cover whatever you happen to be worried about. But it’s a lot of fun seeing how the experts handle the problem.

Leave a comment! If it's your first time, it will go into moderation.