Monthly Archives: January 2022

Duality and Emergence: When Is Spacetime Not Spacetime?

Spacetime is doomed! At least, so say some physicists. They don’t mean this as a warning, like some comic-book universe-destroying disaster, but rather as a research plan. These physicists believe that what we think of as space and time aren’t the full story, but that they emerge from something more fundamental, so that an ultimate theory of nature might not use space or time at all. Other, grumpier physicists are skeptical. Joined by a few philosophers, they think the “spacetime is doomed” crowd are over-excited and exaggerating the implications of their discoveries. At the heart of the argument is the distinction between two related concepts: duality and emergence.

In physics, sometimes we find that two theories are actually dual: despite seeming different, the patterns of observations they predict are the same. Some of the more popular examples are what we call holographic theories. In these situations, a theory of quantum gravity in some space-time is dual to a theory without gravity describing the edges of that space-time, sort of like how a hologram is a 2D image that looks 3D when you move it. For any question you can ask about the gravitational “bulk” space, there is a matching question on the “boundary”. No matter what you observe, neither description will fail.

If theories with gravity can be described by theories without gravity, does that mean gravity doesn’t really exist? If you’re asking that question, you’re asking whether gravity is emergent. An emergent theory is one that isn’t really fundamental, but instead a result of the interaction of more fundamental parts. For example, hydrodynamics, the theory of fluids like water, emerges from more fundamental theories that describe the motion of atoms and molecules.

(For the experts: I, like most physicists, am talking about “weak emergence” here, not “strong emergence”.)

The “spacetime is doomed” crowd think that not just gravity, but space-time itself is emergent. They expect that distances and times aren’t really fundamental, but a result of relationships that will turn out to be more fundamental, like entanglement between different parts of quantum fields. As evidence, they like to bring up dualities where the dual theories have different concepts of gravity, number of dimensions, or space-time. Using those theories, they argue that space and time might “break down”, and not be really fundamental.

(I’ve made arguments like that in the past too.)

The skeptics, though, bring up an important point. If two theories are really dual, then no observation can distinguish them: they make exactly the same predictions. In that case, say the skeptics, what right do you have to call one theory more fundamental than the other? You can say that gravity emerges from a boundary theory without gravity, but you could just as easily say that the boundary theory emerges from the gravity theory. The whole point of duality is that no theory is “more true” than the other: one might be more or less convenient, but both describe the same world. If you want to really argue for emergence, then your “more fundamental” theory needs to do something extra: to predict something that your emergent theory doesn’t predict.

Sometimes this is a fair objection. There are members of the “spacetime is doomed” crowd who are genuinely reckless about this, who’ll tell a journalist about emergence when they really mean duality. But many of these people are more careful, and have thought more deeply about the question. They tend to have some mix of these two perspectives:

First, if two descriptions give the same results, then do the descriptions matter? As physicists, we have a history of treating theories as the same if they make the same predictions. Space-time itself is a result of this policy: in the theory of relativity, two people might disagree on which one of two events happened first or second, but they will agree on the overall distance in space-time between the two. From this perspective, a duality between a bulk theory and a boundary theory isn’t evidence that the bulk theory emerges from the boundary, but it is evidence that both the bulk and boundary theories should be replaced by an “overall theory”, one that treats bulk and boundary as irrelevant descriptions of the same physical reality. This perspective is similar to an old philosophical theory called positivism: that statements are meaningless if they cannot be derived from something measurable. That theory wasn’t very useful for philosophers, which is probably part of why some philosophers are skeptics of “space-time is doomed”. The perspective has been quite useful to physicists, though, so we’re likely to stick with it.

Second, some will say that it’s true that a dual theory is not an emergent theory…but it can be the first step to discover one. In this perspective, dualities are suggestive evidence that a deeper theory is waiting in the wings. The idea would be that one would first discover a duality, then discover situations that break that duality: examples on one side that don’t correspond to anything sensible on the other. Maybe some patterns of quantum entanglement are dual to a picture of space-time, but some are not. (Closer to my sub-field, maybe there’s an object like the amplituhedron that doesn’t respect locality or unitarity.) If you’re lucky, maybe there are situations, or even experiments, that go from one to the other: where the space-time description works until a certain point, then stops working, and only the dual description survives. Some of the models of emergent space-time people study are genuinely of this type, where a dimension emerges in a theory that previously didn’t have one. (For those of you having a hard time imagining this, read my old post about “bubbles of nothing”, then think of one happening in reverse.)

It’s premature to say space-time is doomed, at least as a definite statement. But it is looking like, one way or another, space-time won’t be the right picture for fundamental physics. Maybe that’s because it’s equivalent to another description, redundant embellishment on an essential theoretical core. Maybe instead it breaks down, and a more fundamental theory could describe more situations. We don’t know yet. But physicists are trying to figure it out.

What Are Students? We Just Don’t Know

I’m taking a pedagogy course at the moment, a term-long follow-up to the one-week intro course I took in the spring. The course begins with yet another pedagogical innovation, a “pre-project”. Before the course has really properly started, we get assembled into groups and told to investigate our students. We are supposed to do interviews on a few chosen themes, all with the objective of getting to know our students better. I’m guessing the point is to sharpen our goals, so that when we start learning pedagogy we’ll have a clearer idea of what problems we’d like to solve.

The more I think about this the more I’m looking forward to it. When I TAed in the past, some of the students were always a bit of a mystery. They sat in the back, skipped assignments, and gradually I saw less and less of them. They didn’t go to office hours or the help room, and I always wondered what happened. When in the course did they “turn off”, when did we lose them? They seemed like a kind of pedagogical dark matter, observable only by their presence on the rosters. I’m hoping to detect a little of that dark matter here.

As it’s a group project, we came up with a theme as a group, and questions to support that theme (in particular, we’re focusing on the different experiences between Danes and international students). Since the topic is on my mind in general though, I thought it would be fun to reach out to you guys. Educators in the comments: if you could ask your students one question, what would it be? Students, what is one thing you think your teachers are missing?

The Unpublishable Dirty Tricks of Theoretical Physics

As the saying goes, it is better not to see laws or sausages being made. You’d prefer to see the clean package on the outside than the mess behind the scenes.

The same is true of science. A good paper tells a nice, clean story: a logical argument from beginning to end, with no extra baggage to slow it down. That story isn’t a lie: for any decent paper in theoretical physics, the conclusions will follow from the premises. Most of the time, though, it isn’t how the physicist actually did it.

The way we actually make discoveries is messy. It involves looking for inspiration in all the wrong places: pieces of old computer code and old problems, trying to reproduce this or that calculation with this or that method. In the end, once we find something interesting enough, we can reconstruct a clearer, cleaner, story, something actually fit to publish. We hide the original mess partly for career reasons (easier to get hired if you tell a clean, heroic story), partly to be understood (a paper that embraced the mess of discovery would be a mess to read), and partly just due to that deep human instinct to not let others see us that way.

The trouble is, some of that “mess” is useful, even essential. And because it’s never published or put into textbooks, the only way to learn it is word of mouth.

A lot of these messy tricks involve numerics. Many theoretical physics papers derive things analytically, writing out equations in symbols. It’s easy to make a mistake in that kind of calculation, either writing something wrong on paper or as a bug in computer code. To correct mistakes, many things are checked numerically: we plug in numbers to make sure everything still works. Sometimes this means using an approximation, trying to make sure two things cancel to some large enough number of decimal places. Sometimes instead it’s exact: we plug in prime numbers, and can much more easily see if two things are equal, or if something is rational or contains a square root. Sometimes numerics aren’t just used to check something, but to find a solution: exploring many options in an easier numerical calculation, finding one that works, and doing it again analytically.

“Ansatze” are also common: our fancy word for an educated guess. These we sometimes admit, when they’re at the core of a new scientific idea. But the more minor examples go un-mentioned. If a paper shows a nice clean formula and proves it’s correct, but doesn’t explain how the authors got it…probably, they used an ansatz. This trick can go hand-in-hand with numerics as well: make a guess, check it matches the right numbers, then try to see why it’s true.

The messy tricks can also involve the code itself. In my field we often use “computer algebra” systems, programs to do our calculations for us. These systems are programming languages in their own right, and we need to write computer code for them. That code gets passed around informally, but almost never standardized. Mathematical concepts that come up again and again can be implemented very differently by different people, some much more efficiently than others.

I don’t think it’s unreasonable that we leave “the mess” out of our papers. They would certainly be hard to understand otherwise! But it’s a shame we don’t publish our dirty tricks somewhere, even in special “dirty tricks” papers. Students often start out assuming everything is done the clean way, and start doubting themselves when they notice it’s much too slow to make progress. Learning the tricks is a big part of learning to be a physicist. We should find a better way to teach them.

The arXiv SciComm Challenge

Fellow science communicators, think you can explain everything that goes on in your field? If so, I have a challenge for you. Pick a day, and go through all the new papers on arXiv.org in a single area. For each one, try to give a general-audience explanation of what the paper is about. To make it easier, you can ignore cross-listed papers. If your field doesn’t use arXiv, consider if you can do the challenge with another appropriate site.

I’ll start. I’m looking at papers in the “High Energy Physics – Theory” area, announced 6 Jan, 2022. I’ll warn you in advance that I haven’t read these papers, just their abstracts, so apologies if I get your paper wrong!

arXiv:2201.01303 : Holographic State Complexity from Group Cohomology

This paper says it is a contribution to a Proceedings. That means it is based on a talk given at a conference. In my field, a talk like this usually won’t be presenting new results, but instead summarizes results in a previous paper. So keep that in mind.

There is an idea in physics called holography, where two theories are secretly the same even though they describe the world with different numbers of dimensions. Usually this involves a gravitational theory in a “box”, and a theory without gravity that describes the sides of the box. The sides turn out to fully describe the inside of the box, much like a hologram looks 3D but can be printed on a flat sheet of paper. Using this idea, physicists have connected some properties of gravity to properties of the theory on the sides of the box. One of those properties is complexity: the complexity of the theory on the sides of the box says something about gravity inside the box, in particular about the size of wormholes. The trouble is, “complexity” is a bit subjective: it’s not clear how to give a good definition for it for this type of theory. In this paper, the author studies a theory with a precise mathematical definition, called a topological theory. This theory turns out to have mathematical properties that suggest a well-defined notion of complexity for it.

arXiv:2201.01393 : Nonrelativistic effective field theories with enhanced symmetries and soft behavior

We sometimes describe quantum field theory as quantum mechanics plus relativity. That’s not quite true though, because it is possible to define a quantum field theory that doesn’t obey special relativity, a non-relativistic theory. Physicists do this if they want to describe a system moving much slower than the speed of light: it gets used sometimes for nuclear physics, and sometimes for modeling colliding black holes.

In particle physics, a “soft” particle is one with almost no momentum. We can classify theories based on how they behave when a particle becomes more and more soft. In normal quantum field theories, if they have special behavior when a particle becomes soft it’s often due to a symmetry of the theory, where the theory looks the same even if something changes. This paper shows that this is not true for non-relativistic theories: they have more requirements to have special soft behavior, not just symmetry. They “bootstrap” a few theories, using some general restrictions to find them without first knowing how they work (“pulling them up by their own bootstraps”), and show that the theories they find are in a certain sense unique, the only theories of that kind.

arXiv:2201.01552 : Transmutation operators and expansions for 1-loop Feynman integrands

In recent years, physicists in my sub-field have found new ways to calculate the probability that particles collide. One of these methods describes ordinary particles in a way resembling string theory, and from this discovered a whole “web” of theories that were linked together by small modifications of the method. This method originally worked only for the simplest Feynman diagrams, the “tree” diagrams that correspond to classical physics, but was extended to the next-simplest diagrams, diagrams with one “loop” that start incorporating quantum effects.

This paper concerns a particular spinoff of this method, that can find relationships between certain one-loop calculations in a particularly efficient way. It lets you express calculations of particle collisions in a variety of theories in terms of collisions in a very simple theory. Unlike the original method, it doesn’t rely on any particular picture of how these collisions work, either Feynman diagrams or strings.

arXiv:2201.01624 : Moduli and Hidden Matter in Heterotic M-Theory with an Anomalous U(1) Hidden Sector

In string theory (and its more sophisticated cousin M theory), our four-dimensional world is described as a world with more dimensions, where the extra dimensions are twisted up so that they cannot be detected. The shape of the extra dimensions influences the kinds of particles we can observe in our world. That shape is described by variables called “moduli”. If those moduli are stable, then the properties of particles we observe would be fixed, otherwise they would not be. In general it is a challenge in string theory to stabilize these moduli and get a world like what we observe.

This paper discusses shapes that give rise to a “hidden sector”, a set of particles that are disconnected from the particles we know so that they are hard to observe. Such particles are often proposed as a possible explanation for dark matter. This paper calculates, for a particular kind of shape, what the masses of different particles are, as well as how different kinds of particles can decay into each other. For example, a particle that causes inflation (the accelerating expansion of the universe) can decay into effects on the moduli and dark matter. The paper also shows how some of the moduli are made stable in this picture.

arXiv:2201.01630 : Chaos in Celestial CFT

One variant of the holography idea I mentioned earlier is called “celestial” holography. In this picture, the sides of the box are an infinite distance away: a “celestial sphere” depicting the angles particles go after they collide, in the same way a star chart depicts the angles between stars. Recent work has shown that there is something like a sensible theory that describes physics on this celestial sphere, that contains all the information about what happens inside.

This paper shows that the celestial theory has a property called quantum chaos. In physics, a theory is said to be chaotic if it depends very precisely on its initial conditions, so that even a small change will result in a large change later (the usual metaphor is a butterfly flapping its wings and causing a hurricane). This kind of behavior appears to be present in this theory.

arXiv:2201.01657 : Calculations of Delbrück scattering to all orders in αZ

Delbrück scattering is an effect where the nuclei of heavy elements like lead can deflect high-energy photons, as a consequence of quantum field theory. This effect is apparently tricky to calculate, and previous calculations have involved approximations. This paper finds a way to calculate the effect without those approximations, which should let it match better with experiments.

(As an aside, I’m a little confused by the claim that they’re going to all orders in αZ when it looks like they just consider one-loop diagrams…but this is probably just my ignorance, this is a corner of the field quite distant from my own.)

arXiv:2201.01674 : On Unfolded Approach To Off-Shell Supersymmetric Models

Supersymmetry is a relationship between two types of particles: fermions, which typically make up matter, and bosons, which are usually associated with forces. In realistic theories this relationship is “broken” and the two types of particles have different properties, but theoretical physicists often study models where supersymmetry is “unbroken” and the two types of particles have the same mass and charge. This paper finds a new way of describing some theories of this kind that reorganizes them in an interesting way, using an “unfolded” approach in which aspects of the particles that would normally be combined are given their own separate variables.

(This is another one I don’t know much about, this is the first time I’d heard of the unfolded approach.)

arXiv:2201.01679 : Geometric Flow of Bubbles

String theorists have conjectured that only some types of theories can be consistently combined with a full theory of quantum gravity, others live in a “swampland” of non-viable theories. One set of conjectures characterizes this swampland in terms of “flows” in which theories with different geometry can flow in to each other. The properties of these flows are supposed to be related to which theories are or are not in the swampland.

This paper writes down equations describing these flows, and applies them to some toy model “bubble” universes.

arXiv:2201.01697 : Graviton scattering amplitudes in first quantisation

This paper is a pedagogical one, introducing graduate students to a topic rather than presenting new research.

Usually in quantum field theory we do something called “second quantization”, thinking about the world not in terms of particles but in terms of fields that fill all of space and time. However, sometimes one can instead use “first quantization”, which is much more similar to ordinary quantum mechanics. There you think of a single particle traveling along a “world-line”, and calculate the probability it interacts with other particles in particular ways. This approach has recently been used to calculate interactions of gravitons, particles related to the gravitational field in the same way photons are related to the electromagnetic field. The approach has some advantages in terms of simplifying the results, which are described in this paper.