Monthly Archives: September 2021

Why Can’t I Pay Academics to Do Things for Me?

A couple weeks back someone linked to this blog with a problem. A non-academic, he had done some mathematical work but didn’t feel it was ready to publish. He reached out to a nearby math department and asked what they would charge to help him clean up the work. If the price was reasonable, he’d do it, if not at least he’d know what it would cost.

Neither happened. He got no response, and got more and more frustrated.

For many of you, that result isn’t a big surprise. My academic readers are probably cringing at the thought of getting an email like that. But the guy’s instinct here isn’t too off-base. Certainly, in many industries that kind of email would get a response with an actual quote. Academia happens to be different, in a way that makes the general rule not really apply.

There’s a community called Effective Altruists that evaluate charities. They have a saying, “Money is the Unit of Caring”. The point of the saying isn’t that people with more money care more, or anything like that. Rather, it’s a reminder that, whatever a charity wants to accomplish, more money makes it easier. A lawyer could work an hour in a soup kitchen, but if they donated the proceeds of an hour’s work the soup kitchen could hire four workers instead. Food banks would rather receive money than food, because the money lets them buy whatever they need in bulk. As the Simpsons meme says, “money can be exchanged for goods and services”.

If you pay a charity, or a business, it helps them achieve what they want to do. If you pay an academic, it gets a bit more complicated.

The problem is that for academics, time matters a lot more than our bank accounts. If we want to settle down with a stable job, we need to spend our time doing things that look good on job applications: writing papers, teaching students, and so on. The rest of the time gets spent resting so we have the energy to do all of that.

(What about tenured professors? They don’t have to fight for their own jobs…but by that point, they’ve gotten to know their students and other young people in their sub-field. They want them to get jobs too!)

Money can certainly help with those goals, but not personal money: grant money. With grant money we can hire students and postdocs to do some of that work for us, or pay our own salary so we’re easier for a university to hire. We can buy equipment for those who need that sort of thing, and get to do more interesting science. Rather than “Money is the Unit of Caring”, for academics, “Grant Money is the Unit of Caring”.

Personal money, in contrast, just matters for our rest time. And unless we have expensive tastes, we usually get paid enough for that.

(The exception is for extremely underpaid academics, like PhD students and adjuncts. For some of them money can make a big difference to their quality of life. I had quite a few friends during my PhD who had side gigs, like tutoring, to live a bit more comfortably.)

This is not to say that it’s impossible to pay academics to do side jobs. People do. But when it works, it’s usually due to one of these reasons:

  1. It’s fun. Side work trades against rest time, but if it helps us rest up then it’s not really a tradeoff. Even if it’s a little more boring that what we’d rather do, if it’s not so bad the money can make up the difference.
  2. It looks good on a CV. This covers most of the things academics are sometimes paid to do, like writing articles for magazines. If we can spin something as useful to our teaching or research, or as good for the greater health of the field (or just for our “personal brand”), then we can justify doing it.
  3. It’s a door out of academia. I’ve seen the occasional academic take time off to work for a company. Usually that’s a matter of seeing what it’s like, and deciding whether it looks like a better life. It’s not really “about the money”, even in those cases.

So what if you need an academic’s help with something? You need to convince them it’s worth their time. Money could do it, but only if they’re living precariously, like some PhD students. Otherwise, you need to show that what you’re asking helps the academic do what they’re trying to do: that it is likely to move the field forward, or that it fulfills some responsibility tied to their personal brand. Without that, you’re not likely to hear back.

Four Gravitons and a…What Exactly Are You Now?

I cleaned up my “Who Am I?” page this week, and some of you might notice my title changed. I’m no longer a Postdoc. As of this month, I’m an Assistant Professor.

Before you start congratulating me too much, saying I’ve made it and so on…to be clear, I’m not that kind of Assistant Professor.

Universities in Europe and the US work a bit differently. The US has the tenure-track system: professors start out tenure-track, and have a fixed amount of time to prove themselves. If they do, they get tenure, and essentially permanent employment. If not, they leave.

Some European countries are starting to introduce a tenure track, sometimes just university by university or job-by-job. For the rest, professors are divided not into tenured and tenure-track, but into permanent and fixed-term. Permanent professors are permanent in the way a normal employee of a company would be: they can still be fired, but if not their contract continues indefinitely. Fixed-term professors, then, have contracts for just a fixed span of time. In some cases this can be quite short. In my case, it’s one year.

Some US readers might be thinking this sounds a bit like an Adjunct. In a very literal sense that’s right, in Danish my title is Adjunkt. But it’s not the type of Adjunct you’re thinking of. US universities employ Adjuncts primarily for teaching. They’re often paid per class, and re-hired each year (though with no guarantees, leading to a lot of stress). That’s not my situation. I’m paid a fixed salary, and my primary responsibility is research, not teaching. I also won’t be re-hired next year, unless I find a totally different source of funding. Practically speaking, my situation is a lot like an extra year of Postdoc.

There are some differences. I’m paid a little more than I was as a Postdoc, and I have a few more perks. I’m getting more pedagogy training in the spring, I don’t know if I would have gotten that opportunity if I was still just a Postdoc. It’s an extra level of responsibility, and that does mean something.

But it does also mean I’m still looking for a job. Once again I find myself in application season: polishing my talks and crossing my fingers, not knowing exactly where I’ll end up.

Stop Listing the Amplituhedron as a Competitor of String Theory

The Economist recently had an article (paywalled) that meandered through various developments in high-energy physics. It started out talking about the failure of the LHC to find SUSY, argued this looked bad for string theory (which…not really?) and used it as a jumping-off point to talk about various non-string “theories of everything”. Peter Woit quoted it a few posts back as kind of a bellwether for public opinion on supersymmetry and string theory.

The article was a muddle, but a fairly conventional muddle, explaining or mis-explaining things in roughly the same way as other popular physics pieces. For the most part that didn’t bug me, but one piece of the muddle hit a bit close to home:

The names of many of these [non-string theories of everything] do, it must be conceded, torture the English language. They include “causal dynamical triangulation”, “asymptotically safe gravity”, “loop quantum gravity” and the “amplituhedron formulation of quantum theory”.

I’ve posted about the amplituhedron more than a few times here on this blog. Out of every achievement of my sub-field, it has most captured the public imagination. It’s legitimately impressive, a way to translate calculations of probabilities of collisions of fundamental particles (in a toy model, to be clear) into geometrical objects. What it isn’t, and doesn’t pretend to be, is a theory of everything.

To be fair, the Economist piece admits this:

Most attempts at a theory of everything try to fit gravity, which Einstein describes geometrically, into quantum theory, which does not rely on geometry in this way. The amplituhedron approach does the opposite, by suggesting that quantum theory is actually deeply geometric after all. Better yet, the amplituhedron is not founded on notions of spacetime, or even statistical mechanics. Instead, these ideas emerge naturally from it. So, while the amplituhedron approach does not as yet offer a full theory of quantum gravity, it has opened up an intriguing path that may lead to one.

The reasoning they have leading up to it has a few misunderstandings anyway. The amplituhedron is geometrical, but in a completely different way from how Einstein’s theory of gravity is geometrical: Einstein’s gravity is a theory of space and time, the amplituhedron’s magic is that it hides space and time behind a seemingly more fundamental mathematics.

This is not to say that the amplituhedron won’t lead to insights about gravity. That’s a big part of what it’s for, in the long-term. Because the amplituhedron hides the role of space and time, it might show the way to theories that lack them altogether, theories where space and time are just an approximation for a more fundamental reality. That’s a real possibility, though not at this point a reality.

Even if you take this possibility completely seriously, though, there’s another problem with the Economist’s description: it’s not clear that this new theory would be a non-string theory!

The main people behind the amplituhedron are pretty positively disposed to string theory. If you asked them, I think they’d tell you that, rather than replacing string theory, they expect to learn more about string theory: to see how it could be reformulated in a way that yields insight about trickier problems. That’s not at all like the other “non-string theories of everything” in that list, which frame themselves as alternatives to, or even opponents of, string theory.

It is a lot like several other research programs, though, like ER=EPR and It from Qubit. Researchers in those programs try to use physical principles and toy models to say fundamental things about quantum gravity, trying to think about space and time as being made up of entangled quantum objects. By that logic, they belong in that list in the article alongside the amplituhedron. The reason they aren’t is obvious if you know where they come from: ER=EPR and It from Qubit are worked on by string theorists, including some of the most prominent ones.

The thing is, any reason to put the amplituhedron on that list is also a reason to put them. The amplituhedron is not a theory of everything, it is not at present a theory of quantum gravity. It’s a research direction that might shed new insight about quantum gravity. It doesn’t explicitly involve strings, but neither does It from Qubit most of the time. Unless you’re going to describe It from Qubit as a “non-string theory of everything”, you really shouldn’t describe the amplituhedron as one.

The amplituhedron is a really cool idea, one with great potential. It’s not something like loop quantum gravity, or causal dynamical triangulations, and it doesn’t need to be. Let it be what it is, please!

Sandbox Collaboration

In science, every project is different. Sometimes, my collaborators and I have a clear enough goal, and a clear enough way to get there. There are always surprises along the way, of course, but nonetheless we keep a certain amount of structure. That can mean dividing tasks (“you find the basis, I’ll find the constraints”), or it can mean everyone doing the same work in parallel, like a group of students helping each other with homework.

Recently, I’ve experienced a different kind of collaboration. The goals are less clear, and the methods are more…playful.

Oh, are you building a sandcastle? Or a polylogarithm?

A big task improves with collaboration: you can divide it up. A delicate task improves with collaboration: you can check each other’s work. An unclear task also improves with collaboration: you can explore more ground.

Picture a bunch of children playing in a sandbox. The children start out sitting by themselves, each digging in the sand. Some are building castles, others dig moats, or search for buried treasure, or dinosaur bones. As the children play, their games link up: the moat protects the castle, the knights leave for treasure, the dinosaur awakens and attacks. The stories feed back on one another, and the game grows.

The project I’m working on now is a bit like that sandbox. Each of us has our own ideas about what we’d like to build, and each experiments with them. We see what works and what doesn’t, which castles hold and which fall over. We keep an eye on what each other are doing, and adjust: if that castle is close to done, maybe a moat would improve the view. Piece by piece, the unclear task becomes clearer. Our individual goals draw us in different directions, but what we discover in the end brings us back together, richer for our distant discoveries.

Working this way requires a lot of communication! In the past, I was mystified when I saw other physicists spend hours talking at a blackboard. I thought that must be a waste of time: surely they’d get more done if they sat at their desks and worked things out, rather than having to talk through every step. Now I realize they were likely part of a different kind of collaboration: not dividing tasks or working in parallel on a clear calculation, but exploring different approaches. In these collaborations, those long chats are a kind of calibration: by explaining what you’re trying to do, you see whether it makes sense to your collaborators. You can drop the parts that don’t make sense and build in some of your collaborators’ ideas. In the end you begin to converge, to something that everyone can endorse. Your sandcastles meet up, your stories become one story. When everything looks good, you’re ready to call over your mom (or in this case, the arXiv) and show it off.