Category Archives: Science Communication

School Facts and Research Facts

As you grow up, teachers try to teach you how the world works. This is more difficult than it sounds, because teaching you something is a much harder goal than just telling you something. A teacher wants you to remember what you’re told. They want you to act on it, and to generalize it. And they want you to do this not just for today’s material, but to set a foundation for next year, and the next. They’re setting you up for progress through a whole school system, with its own expectations.

Because of that, not everything a teacher tells you is, itself, a fact about the world. Some things you hear from teachers are liked the scaffolds on a building. They’re facts that only make sense in the context of school, support that lets you build to a point where you can learn other facts, and throw away the school facts that got you there.

Not every student uses all of that scaffolding, though. The scaffold has to be complete enough that some students can use it to go on, getting degrees in science or mathematics, and eventually becoming researchers where they use facts more deeply linked to the real world. But most students don’t become researchers. So the scaffold sits there, unused. And many people, as their lives move on, mistake the scaffold for the real world.

Here’s an example. How do you calculate something like this?

3+4\div (3-1)\times 5

From school, you might remember order of operations, or PEMDAS. First parentheses, then exponents, multiplication, division, addition, and finally subtraction. If you ran into that calculation in school, you could easily work it out.

But out of school, in the real world? Trick question, you never calculate something like that to begin with.

When I wrote this post, I had to look up how to write \div and \times. In the research world, people are far more likely to run into calculations like this:

3+5\frac{4}{3-1}

Here, it’s easier to keep track of what order you need to do things. In other situations, you might be writing a computer program (or an Excel spreadsheet formula, which is also a computer program). Then you follow that programming language’s rules for order of operations, which may or may not match PEMDAS.

PEMDAS was taught to you in school for good reason. It got you used to following rules to understand notation, and gave you tools the teachers needed to teach you other things. But it isn’t a fact about the universe. It’s a fact about school.

Once you start looking around for these “school facts”, they show up everywhere.

Are there really “three states of matter”, solid, liquid, and gas? Or four, if you add plasma? Well, sort of. There are real scientific definitions for solids, liquids, gases, and plasmas, and they play a real role in how people model big groups of atoms, “matter” in a quite specific sense. But they can’t be used to describe literally everything. If you start asking what state of matter light or spacetime is, you’ve substituted a simplification that was useful for school (“everything is one of three states of matter”) for the actual facts in the real world.

If you remember a bit further, maybe you remember there are two types of things, matter and energy? You might have even heard that matter and antimatter annihilate into energy. These are also just school facts, though. “Energy” isn’t something things are made of, it’s a property things have. Instead, your teachers were building scaffolding for understanding the difference between massive and massless particles, or between dark matter and dark energy. Each of those uses different concepts of matter and energy, and each in turn is different than the concept of matter in its states of solid, liquid, and gas. But in school, you need a consistent scaffold to learn, not a mess of different definitions for different applications. So unless you keep going past school, you don’t learn that.

Physics in school likes to work with forces, and forces do sometimes make an appearance in the real world, for example for engineers. But if you’re asking a question about fundamental physics, like “is gravity really a force?”, then you’re treating a school fact as if it was a research fact. Fundamental physics doesn’t care about forces in the same way. It uses different mathematical tools, like Lagrangians and Hamiltonians, to calculate the motion of objects in systems, and uses “force” in a pop science way to describe fundamental interactions.

If you get good enough at this, you can spot which things you learned in school were likely just scaffolding “school facts”, and which are firm enough that they may hold further. Any simple division of the world into categories is likely a school fact, one that let you do exercises on your homework but gets much more complicated when the real world gets involved. Contradictory or messy concepts are usually another sign, showing something fuzzy used to get students comfortable rather than something precise enough for professionals to use. Keep an eye out, and even if you don’t yet know the real facts, you’ll know enough to know what you’re missing.

On Theories of Everything and Cures for Cancer

Some people are disappointed in physics. Shocking, I know!

Those people, when careful enough, clarify that they’re disappointed in fundamental physics: not the physics of materials or lasers or chemicals or earthquakes, or even the physics of planets and stars, but the physics that asks big fundamental questions, about the underlying laws of the universe and where they come from.

Some of these people are physicists themselves, or were once upon a time. These often have in mind other directions physicists should have gone. They think that, with attention and funding, their own ideas would have gotten us closer to our goals than the ideas that, in practice, got the attention and the funding.

Most of these people, though, aren’t physicists. They’re members of the general public.

It’s disappointment from the general public, I think, that feels the most unfair to physicists. The general public reads history books, and hears about a series of revolutions: Newton and Maxwell, relativity and quantum mechanics, and finally the Standard Model. They read science fiction books, and see physicists finding “theories of everything”, and making teleporters and antigravity engines. And they wonder what made the revolutions stop, and postponed the science fiction future.

Physicists point out, rightly, that this is an oversimplified picture of how the world works. Something happens between those revolutions, the kind of progress not simple enough to summarize for history class. People tinker away at puzzles, and make progress. And they’re still doing that, even for the big fundamental questions. Physicists know more about even faraway flashy topics like quantum gravity than they did ten years ago. And while physicists and ex-physicists can argue about whether that work is on the right path, it’s certainly farther along its own path than it was. We know things we didn’t know before, progress continues to be made. We aren’t at the “revolution” stage yet, or even all that close. But most progress isn’t revolutionary, and no-one can predict how often revolutions should take place. A revolution is never “due”, and thus can never be “overdue”.

Physicists, in turn, often don’t notice how normal this kind of reaction from the public is. They think people are being stirred up by grifters, or negatively polarized by excess hype, that fundamental physics is facing an unfair reaction only shared by political hot-button topics. But while there are grifters, and people turned off by the hype…this is also just how the public thinks about science.

Have you ever heard the phrase “a cure for cancer”?

Fiction is full of scientists working on a cure for cancer, or who discovered a cure for cancer, or were prevented from finding a cure for cancer. It’s practically a trope. It’s literally a trope.

It’s also a real thing people work on, in a sense. Many scientists work on better treatments for a variety of different cancers. They’re making real progress, even dramatic progress. As many whose loved ones have cancer know, it’s much more likely for someone with cancer to survive than it was, say, twenty years ago.

But those cures don’t meet the threshold for science fiction, or for the history books. They don’t move us, like the polio vaccine did, from a world where you know many people with a disease to a world where you know none. They don’t let doctors give you a magical pill, like in a story or a game, that instantly cures your cancer.

For the vast majority of medical researchers, that kind of goal isn’t realistic, and isn’t worth thinking about. The few that do pursue it work towards extreme long-term solutions, like periodically replacing everyone’s skin with a cloned copy.

So while you will run into plenty of media descriptions of scientists working on cures for cancer, you won’t see the kind of thing the public expects is an actual “cure for cancer”. And people are genuinely disappointed about this! “Where’s my cure for cancer?” is a complaint on the same level as “where’s my hovercar?” There are people who think that medical science has made no progress in fifty years, because after all those news articles, we still don’t have a cure for cancer.

I appreciate that there are real problems in what messages are being delivered to the public about physics, both from hypesters in the physics mainstream and grifters outside it. But put those problems aside, and a deeper issue remains. People understand the world as best they can, as a story. And the world is complicated and detailed, full of many people making incremental progress on many things. Compared to a story, the truth is always at a disadvantage.

Reminder to Physics Popularizers: “Discover” Is a Technical Term

When a word has both an everyday meaning and a technical meaning, it can cause no end of confusion.

I’ve written about this before using one of the most common examples, the word “model”, which means something quite different in the phrases “large language model”, “animal model for Alzheimer’s” and “model train”. And I’ve written about running into this kind of confusion at the beginning of my PhD, with the word “effective”.

But there is one example I see crop up again and again, even with otherwise skilled science communicators. It’s the word “discover”.

“Discover”, in physics, has a technical meaning. It’s a first-ever observation of something, with an associated standard of evidence. In this sense, the LHC discovered the Higgs boson in 2012, and LIGO discovered gravitational waves in 2015. And there are discoveries we can anticipate, like the cosmic neutrino background.

But of course, “discover” has a meaning in everyday English, too.

You probably think I’m going to say that “discover”, in everyday English, doesn’t have the same statistical standards it does in physics. That’s true of course, but it’s also pretty obvious, I don’t think it’s confusing anybody.

Rather, there is a much more important difference that physicists often forget: in everyday English, a discovery is a surprise.

“Discover”, a word arguably popularized by Columbus’s discovery of the Americas, is used pretty much exclusively to refer to learning about something you did not know about yet. It can be minor, like discovering a stick of gum you forgot, or dramatic, like discovering you’ve been transformed into a giant insect.

Now, as a scientist, you might say that everything that hasn’t yet been observed is unknown, ready for discovery. We didn’t know that the Higgs boson existed before the LHC, and we don’t know yet that there is a cosmic neutrino background.

But just because we don’t know something in a technical sense, doesn’t mean it’s surprising. And if something isn’t surprising at all, then in everyday, colloquial English, people don’t call it a discovery. You don’t “discover” that the store has milk today, even if they sometimes run out. You don’t “discover” that a movie is fun, if you went because you heard reviews claim it would be, even if the reviews might have been wrong. You don’t “discover” something you already expect.

At best, maybe you could “discover” something controversial. If you expect to find a lost city of gold, and everyone says you’re crazy, then fine, you can discover the lost city of gold. But if everyone agrees that there is probably a lost city of gold there? Then in everyday English, it would be very strange to say that you were the one who discovered it.

With this in mind, the way physicists use the word “discover” can cause a lot of confusion. It can make people think, as with gravitational waves, that a “discovery” is something totally new, that we weren’t pretty confident before LIGO that gravitational waves exist. And it can make people get jaded, and think physicists are overhyping, talking about “discovering” this or that particle physics fact because an experiment once again did exactly what it was expected to.

My recommendation? If you’re writing for the general public, use other words. The LHC “decisively detected” the Higgs boson. We expect to see “direct evidence” of the cosmic neutrino background. “Discover” has baggage, and should be used with care.

Explain/Teach/Advocate

Scientists have different goals when they communicate, leading to different styles, or registers, of communication. If you don’t notice what register a scientist is using, you might think they’re saying something they’re not. And if you notice someone using the wrong register for a situation, they may not actually be a scientist.

Sometimes, a scientist is trying to explain an idea to the general public. The point of these explanations is to give you appreciation and intuition for the science, not to understand it in detail. This register makes heavy use of metaphors, and sometimes also slogans. It should almost never be taken literally, and a contradiction between two different scientist explanations usually just means they are using incompatible metaphors for the same concept. Sometimes, scientists who do this a lot will comment on other metaphors you might have heard, referencing other slogans to help explain what those explanations miss. They do this knowing that they do, in the end, agree on the actual science: they’re just trying to give you another metaphor, with a deeper intuition for a neglected part of the story.

Other times, scientists are trying to teach a student to be able to do something. Teaching can use metaphors or slogans as introductions, but quickly moves past them, because it wants to show the students something they can use: an equation, a diagram, a classification. If a scientist shows you any of these equations/diagrams/classifications without explaining what they mean, then you’re not the student they had in mind: they had designed their lesson for someone who already knew those things. Teaching may convey the kinds of appreciation and intuition that explanations for the general public do, but that goal gets much less emphasis. The main goal is for students with the appropriate background to learn to do something new.

Finally, sometimes scientists are trying to advocate for a scientific point. In this register, and only in this register, are they trying to convince people who don’t already trust them. This kind of communication can include metaphors and slogans as decoration, but the bulk will be filled with details, and those details should constitute evidence: they should be a structured argument, one that lays out, scientifically, why others should come to the same conclusion.

A piece that tries to address multiple audiences can move between registers in a clean way. But if the register jumps back and forth, or if the wrong register is being used for a task, that usually means trouble. That trouble can be simple boredom, like a scientist’s typical conference talk that can’t decide whether it just wants other scientists to appreciate the work, whether it wants to teach them enough to actually use it, or whether it needs to convince any skeptics. It can also be more sinister: a lot of crackpots write pieces that are ostensibly aimed at convincing other scientists, but are almost entirely metaphors and slogans, pieces good at tugging on the general public’s intuition without actually giving scientists anything meaningful to engage with.

If you’re writing, or speaking, know what register you need to use to do what you’re trying to do! And if you run into a piece that doesn’t make sense, consider that it might be in a different register than you thought.

Newsworthiness Bias

I had a chat about journalism recently, and I had a realization about just how weird science journalism, in particular, is.

Journalists aren’t supposed to be cheerleaders. Journalism and PR have very different goals (which is why I keep those sides of my work separate). A journalist is supposed to be uncompromising, to write the truth even if it paints the source in a bad light.

Norms are built around this. Serious journalistic outlets usually don’t let sources see pieces before they’re published. The source doesn’t have the final say in how they’re portrayed: the journalist reserves the right to surprise them if justified. Investigative journalists can be superstars, digging up damning secrets about the powerful.

When a journalist starts a project, the piece might turn out positive, or negative. A politician might be the best path forward, or a disingenuous grifter. A business might be a great investment opportunity, or a total scam. A popular piece of art might be a triumph, or a disappointment.

And a scientific result?

It might be a fraud, of course. Scientific fraud does exist, and is a real problem. But it’s not common, really. Pick a random scientific paper, filter by papers you might consider reporting on in the first place, and you’re very unlikely to find a fraudulent result. Science journalists occasionally report on spectacularly audacious scientific frauds, or frauds in papers that have already made the headlines. But you don’t expect fraud in the average paper you cover.

It might be scientifically misguided: flawed statistics, a gap in a proof, a misuse of concepts. Journalists aren’t usually equipped to ferret out these issues, though. Instead, this is handled in principle by peer review, and in practice by the scientific community outside of the peer review process.

Instead, for a scientific result, the most common negative judgement isn’t that it’s a lie, or a mistake. It’s that it’s boring.

And certainly, a good science journalist can judge a paper as boring. But there is a key difference between doing that, and judging a politician as crooked or a popular work of art as mediocre. You can write an article about the lying candidate for governor, or the letdown Tarantino movie. But if a scientific result is boring, and nobody else has covered it…then it isn’t newsworthy.

In science, people don’t usually publish their failures, their negative results, their ho-hum obvious conclusions. That fills the literature with only the successes, a phenomenon called publication bias. It also means, though, that scientists try to make their results sound more successful, more important and interesting, than they actually are. Some of the folks fighting the replication crisis have coined a term for this: they call it importance hacking.

The same incentives apply to journalists, especially freelancers. Starting out, it was far from clear that I could make enough to live on. I felt like I had to make every lead count, to find a newsworthy angle on every story idea I could find, because who knew when I would find another one? Over time, I learned to balance that pull better. Now that I’m making most of my income from consulting instead, the pressure has eased almost entirely: there are things I’m tempted to importance-hack for the sake of friends, but nothing that I need to importance-hack to stay in the black.

Doing journalism on the side may be good for me personally at the moment, but it’s not really a model. Much like we need career scientists, even if their work is sometimes boring, we need career journalists, even if they’re sometimes pressured to overhype.

So if we don’t want to incentivize science journalists to be science cheerleaders, what can we do instead?

In science, one way to address publication bias is with pre-registered studies. A scientist sets out what they plan to test, and a journal agrees to publish the result, no matter what it is. You could imagine something like this for science journalism. I once proposed a recurring column where every month I would cover a random paper from arXiv.org, explaining what it meant to accomplish. I get why the idea was turned down, but I still think about it.

In journalism, the arts offer the closest parallel with a different approach. There are many negative reviews of books, movies, and music, and most of them merely accuse the art of being boring, not evil. These exist because they focus on popular works that people pay attention to anyway, so that any negative coverage has someone to convince. You could imagine applying this model to science, though it could be a bit silly. I’m envisioning a journalist who writes an article every time Witten publishes, rating some papers impressive and others disappointing, the same way a music journalist might cover every Taylor Swift album.

Neither of these models are really satisfactory. You could imagine an even more adversarial model, where journalists run around accusing random scientists of wasting the government’s money, but that seems dramatically worse.

So I’m not sure. Science is weird, and hard to accurately value: if we knew how much something mattered already, it would be engineering, not science. Journalism is weird: it’s public-facing research, where the public facing is the whole point. Their combination? Even weirder.

Hype, Incentives, and Culture

To be clear, hype isn’t just lying.

We have a word for when someone lies to convince someone else to pay them, and that word is fraud. Most of what we call hype doesn’t reach that bar.

Instead, hype lives in a gray zone of affect and metaphor.

Some hype is pure affect. It’s about the subjective details, it’s about mood. “This is amazing” isn’t a lie, or at least, isn’t a lie you can check. They might really be amazed!

Some hype relies on metaphor. A metaphor can’t really be a lie, because a metaphor is always incomplete. But a metaphor can certainly be misleading. It can associate something minor with something important, or add emotional valence that isn’t really warranted.

Hype lies in a gray zone…and precisely because it lives in a gray zone, not everything that looks like hype is intended to be type.

We think of hype as a consequence of incentives. Scientists hype their work to grant committees to get grants, and hype it more to the public for prestige. Companies hype their products to sell them, and their business plans to draw in investors.

But what looks like hype can also be language, and culture.

To many people in the rest of the world, the way Americans talk about almost everything is hype. Everything is bigger and nicer and cooler. This isn’t because Americans are under some sort of weird extra career incentives, though. It’s just how they expect to talk, how they learned to talk, how everyone around them normally talks.

Similarly, people in different industries are used to talking differently. Depending on what work you do, you interpret different metaphors in different ways. What might seem like an enthusiastic endorsement in one industry might be dismissive in another.

In the end, it takes two to communicate: a speaker, and an audience. Speakers want to get their audience excited, and hopefully, if they don’t want to hype, to understand something of the truth. That means understanding how the audience communicates enthusiasm, and how it differs from the speaker. It means understanding language, and culture.

Bonus info for Reversible Computing and Megastructures

After some delay, a bonus info post!

At FirstPrinciples.org, I had a piece covering work by engineering professor Colin McInnes on stability of Dyson spheres and ringworlds. This was a fun one to cover, mostly because of how it straddles the borderline between science fiction and practical physics and engineering. McInnes’s claim to fame is work on solar sails, which seem like a paradigmatic example of that kind of thing: a common sci-fi theme that’s surprisingly viable. His work on stability was interesting to me because it’s the kind of work that a century and a half ago would have been paradigmatic physics. Now, though, very few physicists work on orbital mechanics, and a lot of the core questions have passed on to engineering. It’s fascinating to see how these classic old problems can still have undiscovered solutions, and how the people best equipped to find them now are tinkerers practicing their tools instead of cutting-edge mathematicians.

At Quanta Magazine, I had a piece about reversible computing. Readers may remember I had another piece on that topic at the end of March, a profile on the startup Vaire Computing at FirstPrinciples.org. That piece talked about FirstPrinciples, but didn’t say much about reversible computing. I figured I’d combine the “bonus info” for both posts here.

Neither piece went into much detail about the engineering involved, as it didn’t really make sense in either venue. One thing that amused me a bit is that the core technology that drove Vaire into action is something that actually should be very familiar to a physics or engineering student: a resonator. Theirs is obviously quite a bit more sophisticated than the base model, but at its heart it’s doing the same thing: storing charge and controlling frequency. It turns out that those are both essential to making reversible computers work: you need to store charge so it isn’t lost to ground when you empty a transistor, and you need to control the frequency so you can have waves with gentle transitions instead of the more sharp corners of the waves used in normal computers, thus wasting less heat in rapid changes of voltage. Vaire recently announced they’re getting 50% charge recovery from their test chips, and they’re working on raising that number.

Originally, the Quanta piece was focused more on reversible programming than energy use, as the energy angle seemed a bit more physics-focused than their computer science desk usually goes. The emphasis ended up changing as I worked on the draft, but it meant that an interesting parallel story got lost on the cutting-room floor. There’s a community of people who study reversible computing not from the engineering side, but from the computer science side, studying reversible logic and reversible programming languages. It’s a pursuit that goes back to the 1980’s, where at Caltech around when Feynman was teaching his course on the physics of computing a group of students were figuring out how to set up a reversible programming language. Called Janus, they sent their creation to Landauer, and the letter ended up with Michael Frank after Landauer died. There’s a lovely quote from it regarding their motivation: “We did it out of curiosity over whether such an odd animal as this was possible, and because we were interested in knowing where we put information when we programmed. Janus forced us to pay attention to where our bits went since none could be thrown away.”

Being forced to pay attention to information, in turn, is what has animated the computer science side of the reversible computing community. There are applications to debugging, where you can run code backwards when it gets stuck, to encryption and compression, where you want to be able to recover the information you hid away, and to security, where you want to keep track of information to make sure a hacker can’t figure out things they shouldn’t. Also, for a lot of these people, it’s just a fun puzzle. Early on my attention was caught by a paper by Hannah Earley describing a programming language called Alethe, a word you might recognize from the Greek word for truth, which literally means something like “not-forgetting”.

(Compression is particularly relevant for the “garbage data” you need to output in a reversible computation. If you want to add two numbers reversibly, naively you need to keep both input numbers and their output, but you can be more clever than that and just keep one of the inputs since you can subtract to find the other. There are a lot of substantially more clever tricks in this vein people have figured out over the years.)

I didn’t say anything about the other engineering approaches to reversible computing, that try to do something outside of traditional computer chips. There’s DNA computing, which tries to compute with a bunch of DNA in solution. There’s the old concept of ballistic reversible computing, where you imagine a computer that runs like a bunch of colliding billiard balls, conserving energy. Coordinating such a computer can be a nightmare, and early theoretical ideas were shown to be disrupted by something as tiny as a few stray photons from a distant star. But people like Frank figured out ways around the coordination problem, and groups have experimented with superconductors as places to toss those billiard balls around. The early billiard-inspired designs also had a big impact on quantum computing, where you need reversible gates and the only irreversible operation is the measurement. The name “Toffoli” comes up a lot in quantum computing discussions, I hadn’t known before this that Toffoli gates were originally for reversible computing in general, not specifically quantum computing.

Finally, I only gestured at the sci-fi angle. For reversible computing’s die-hards, it isn’t just a way to make efficient computers now. It’s the ultimate future of the technology, the kind of energy-efficiency civilization will need when we’re covering stars with shells of “computronium” full of busy joyous artificial minds.

And now that I think about it, they should chat with McInnes. He can tell them the kinds of stars they should build around.

Branching Out, and Some Ground Rules

In January, my time at the Niels Bohr Institute ended. Instead of supporting myself by doing science, as I’d done the last thirteen or so years, I started making a living by writing, doing science journalism.

That work picked up. My readers here have seen a few of the pieces already, but there are lots more in the pipeline, getting refined by editors or waiting to be published. It’s given me a bit of income, and a lot of visibility.

That visibility, in turn, has given me new options. It turns out that magazines aren’t the only companies interested in science writing, and journalism isn’t the only way to write for a living. Companies that invest in science want a different kind of writing, one that builds their reputation both with the public and with the scientific community. And as I’ve discovered, if you have enough of a track record, some of those companies will reach out to you.

So I’m branching out, from science journalism to science communications consulting, advising companies how to communicate science. I’ve started working with an exciting client, with big plans for the future. If you follow me on LinkedIn, you’ll have seen a bit about who they are and what I’ll be doing for them.

Here on the blog, I’d like to maintain a bit more separation. Blogging is closer to journalism, and in journalism, one ought to be careful about conflicts of interest. The advice I’ve gotten is that it’s good to establish some ground rules, separating my communications work from my journalistic work, since I intend to keep doing both.

So without further ado, my conflict of interest rules:

  • I will not write in a journalistic capacity about my consulting clients, or their direct competitors.
  • I will not write in a journalistic capacity about the technology my clients are investing in, except in extremely general terms. (For example, most businesses right now are investing in AI. I’ll still write about AI in general, but not about any particular AI technologies my clients are pursuing.)
  • I will more generally maintain a distinction between areas I cover journalistically and areas where I consult. Right now, this means I avoid writing in a journalistic capacity about:
    • Health/biomedical topics
    • Neuroscience
    • Advanced sensors for medical applications

I plan to update these rules over time as I get a better feeling for what kinds of conflict of interest risks I face and what my clients are comfortable with. I now have a Page for this linked in the top menu, clients and editors can check there to see my current conflict of interest rules.

There Is No Shortcut to Saying What You Mean

Blogger Andrew Oh-Willeke of Dispatches from Turtle Island pointed me to an editorial in Science about the phrase scientific consensus.

The editorial argues that by referring to conclusions like the existence of climate change or vaccine safety as “the scientific consensus”, communicators have inadvertently fanned the flames of distrust. By emphasizing agreement between scientists, the phrase “scientific consensus” leaves open the question of how that consensus was reached. More conspiracy-minded people imagine shady backroom deals and corrupt payouts, while the more realistic blame incentives and groupthink. If you disagree with “the scientific consensus”, you may thus decide the best way forward is to silence those pesky scientists.

(The link to current events is left as an exercise to the reader, to comment on elsewhere. As usual, please no explicit discussion of politics on this blog!)

Instead of “scientific consensus”, the editorial suggests another term, convergence of evidence. The idea is that by centering the evidence instead of the scientists, the phrase would make it clear that these conclusions are justified by something more than social pressures, and will remain even if the scientists promoting them are silenced.

Oh-Willeke pointed me to another blog post responding to the editorial, which has a nice discussion of how the terms were used historically, showing their popularity over time. “Convergence of evidence” was more popular in the 1950’s, with a small surge in the late 90’s and early 2000’s. “Scientific consensus” rose in the 1980’s and 90’s, lining up with a time when social scientists were skeptical about science’s objectivity and wanted to explore the social reasons why scientists come to agreement. It then fell around the year 2000, before rising again, this time used instead by professional groups of scientists to emphasize their agreement on issues like climate change.

(The blog post then goes on to try to motivate the word “consilience” instead, on the rather thin basis that “convergence of evidence” isn’t interdisciplinary enough, which seems like a pretty silly objection. “Convergence” implies coming in from multiple directions, it’s already interdisciplinary!)

I appreciate “convergence of evidence”, it seems like a useful phrase. But I think the editorial is working from the wrong perspective, in trying to argue for which terms “we should use” in the first place.

Sometimes, as a scientist or an organization or a journalist, you want to emphasize evidence. Is it “a preponderance of evidence”, most but not all? Is it “overwhelming evidence”, evidence so powerful it is unlikely to ever be defeated? Or is it a “convergence of evidence”, evidence that came in slowly from multiple paths, each independent route making a coincidence that much less likely?

But sometimes, you want to emphasize the judgement of the scientists themselves.

Sometimes when scientists agree, they’re working not from evidence but from personal experience: feelings of which kinds of research pan out and which don’t, or shared philosophies that sit deep in how they conceive their discipline. Describing physicists’ reasons for expecting supersymmetry before the LHC turned on as a convergence of evidence would be inaccurate. Describing it as having been a (not unanimous) consensus gets much closer to the truth.

Sometimes, scientists do have evidence, but as a journalist, you can’t evaluate its strength. You note some controversy, you can follow some of the arguments, but ultimately you have to be honest about how you got the information. And sometimes, that will be because it’s what most of the responsible scientists you talked to agreed on: scientific consensus.

As science communicators, we care about telling the truth (as much as we ever can, at any rate). As a result, we cannot adopt blanket rules of thumb. We cannot say, “we as a community are using this term now”. The only responsible thing we can do is to think about each individual word. We need to decide what we actually mean, to read widely and learn from experience, to find which words express our case in a way that is both convincing and accurate. There’s no shortcut to that, no formula where you just “use the right words” and everything turns out fine. You have to do the work, and hope it’s enough.

This Week, at FirstPrinciples.org

I’ve got a piece out this week in a new venue: FirstPrinciples.org, where I’ve written a profile of a startup called Vaire Computing.

Vaire works on reversible computing, an idea that tries to leverage thermodynamics to make a computer that wastes as little heat as possible. While I learned a lot of fun things that didn’t make it into the piece…I’m not going to tell you them this week! That’s because I’m working on another piece about reversible computing, focused on a different aspect of the field. When that piece is out I’ll have a big “bonus material post” talking about what I learned writing both pieces.

This week, instead, the bonus material is about FirstPrinciples.org itself, where you’ll be seeing me write more often in future. The First Principles Foundation was founded by Ildar Shar, a Canadian tech entrepreneur who thinks that physics is pretty cool. (Good taste that!) His foundation aims to support scientific progress, especially in addressing the big, fundamental questions. They give grants, analyze research trends, build scientific productivity tools…and most relevantly for me, publish science news on their website, in a section called the Hub.

The first time I glanced through the Hub, it was clear that FirstPrinciples and I have a lot in common. Like me, they’re interested both in scientific accomplishments and in the human infrastructure that makes them possible. They’ve interviewed figures in the open access movement, like the creators of arXiv and SciPost. On the science side, they mix coverage of the mainstream and reputable with outsiders challenging the status quo, and hot news topics with explainers of key concepts. They’re still new, and still figuring out what they want to be. But from my glimpse on the way, it looks like they’re going somewhere good.