Category Archives: Science Communication

Reminder to Physics Popularizers: “Discover” Is a Technical Term

When a word has both an everyday meaning and a technical meaning, it can cause no end of confusion.

I’ve written about this before using one of the most common examples, the word “model”, which means something quite different in the phrases “large language model”, “animal model for Alzheimer’s” and “model train”. And I’ve written about running into this kind of confusion at the beginning of my PhD, with the word “effective”.

But there is one example I see crop up again and again, even with otherwise skilled science communicators. It’s the word “discover”.

“Discover”, in physics, has a technical meaning. It’s a first-ever observation of something, with an associated standard of evidence. In this sense, the LHC discovered the Higgs boson in 2012, and LIGO discovered gravitational waves in 2015. And there are discoveries we can anticipate, like the cosmic neutrino background.

But of course, “discover” has a meaning in everyday English, too.

You probably think I’m going to say that “discover”, in everyday English, doesn’t have the same statistical standards it does in physics. That’s true of course, but it’s also pretty obvious, I don’t think it’s confusing anybody.

Rather, there is a much more important difference that physicists often forget: in everyday English, a discovery is a surprise.

“Discover”, a word arguably popularized by Columbus’s discovery of the Americas, is used pretty much exclusively to refer to learning about something you did not know about yet. It can be minor, like discovering a stick of gum you forgot, or dramatic, like discovering you’ve been transformed into a giant insect.

Now, as a scientist, you might say that everything that hasn’t yet been observed is unknown, ready for discovery. We didn’t know that the Higgs boson existed before the LHC, and we don’t know yet that there is a cosmic neutrino background.

But just because we don’t know something in a technical sense, doesn’t mean it’s surprising. And if something isn’t surprising at all, then in everyday, colloquial English, people don’t call it a discovery. You don’t “discover” that the store has milk today, even if they sometimes run out. You don’t “discover” that a movie is fun, if you went because you heard reviews claim it would be, even if the reviews might have been wrong. You don’t “discover” something you already expect.

At best, maybe you could “discover” something controversial. If you expect to find a lost city of gold, and everyone says you’re crazy, then fine, you can discover the lost city of gold. But if everyone agrees that there is probably a lost city of gold there? Then in everyday English, it would be very strange to say that you were the one who discovered it.

With this in mind, the way physicists use the word “discover” can cause a lot of confusion. It can make people think, as with gravitational waves, that a “discovery” is something totally new, that we weren’t pretty confident before LIGO that gravitational waves exist. And it can make people get jaded, and think physicists are overhyping, talking about “discovering” this or that particle physics fact because an experiment once again did exactly what it was expected to.

My recommendation? If you’re writing for the general public, use other words. The LHC “decisively detected” the Higgs boson. We expect to see “direct evidence” of the cosmic neutrino background. “Discover” has baggage, and should be used with care.

Explain/Teach/Advocate

Scientists have different goals when they communicate, leading to different styles, or registers, of communication. If you don’t notice what register a scientist is using, you might think they’re saying something they’re not. And if you notice someone using the wrong register for a situation, they may not actually be a scientist.

Sometimes, a scientist is trying to explain an idea to the general public. The point of these explanations is to give you appreciation and intuition for the science, not to understand it in detail. This register makes heavy use of metaphors, and sometimes also slogans. It should almost never be taken literally, and a contradiction between two different scientist explanations usually just means they are using incompatible metaphors for the same concept. Sometimes, scientists who do this a lot will comment on other metaphors you might have heard, referencing other slogans to help explain what those explanations miss. They do this knowing that they do, in the end, agree on the actual science: they’re just trying to give you another metaphor, with a deeper intuition for a neglected part of the story.

Other times, scientists are trying to teach a student to be able to do something. Teaching can use metaphors or slogans as introductions, but quickly moves past them, because it wants to show the students something they can use: an equation, a diagram, a classification. If a scientist shows you any of these equations/diagrams/classifications without explaining what they mean, then you’re not the student they had in mind: they had designed their lesson for someone who already knew those things. Teaching may convey the kinds of appreciation and intuition that explanations for the general public do, but that goal gets much less emphasis. The main goal is for students with the appropriate background to learn to do something new.

Finally, sometimes scientists are trying to advocate for a scientific point. In this register, and only in this register, are they trying to convince people who don’t already trust them. This kind of communication can include metaphors and slogans as decoration, but the bulk will be filled with details, and those details should constitute evidence: they should be a structured argument, one that lays out, scientifically, why others should come to the same conclusion.

A piece that tries to address multiple audiences can move between registers in a clean way. But if the register jumps back and forth, or if the wrong register is being used for a task, that usually means trouble. That trouble can be simple boredom, like a scientist’s typical conference talk that can’t decide whether it just wants other scientists to appreciate the work, whether it wants to teach them enough to actually use it, or whether it needs to convince any skeptics. It can also be more sinister: a lot of crackpots write pieces that are ostensibly aimed at convincing other scientists, but are almost entirely metaphors and slogans, pieces good at tugging on the general public’s intuition without actually giving scientists anything meaningful to engage with.

If you’re writing, or speaking, know what register you need to use to do what you’re trying to do! And if you run into a piece that doesn’t make sense, consider that it might be in a different register than you thought.

Newsworthiness Bias

I had a chat about journalism recently, and I had a realization about just how weird science journalism, in particular, is.

Journalists aren’t supposed to be cheerleaders. Journalism and PR have very different goals (which is why I keep those sides of my work separate). A journalist is supposed to be uncompromising, to write the truth even if it paints the source in a bad light.

Norms are built around this. Serious journalistic outlets usually don’t let sources see pieces before they’re published. The source doesn’t have the final say in how they’re portrayed: the journalist reserves the right to surprise them if justified. Investigative journalists can be superstars, digging up damning secrets about the powerful.

When a journalist starts a project, the piece might turn out positive, or negative. A politician might be the best path forward, or a disingenuous grifter. A business might be a great investment opportunity, or a total scam. A popular piece of art might be a triumph, or a disappointment.

And a scientific result?

It might be a fraud, of course. Scientific fraud does exist, and is a real problem. But it’s not common, really. Pick a random scientific paper, filter by papers you might consider reporting on in the first place, and you’re very unlikely to find a fraudulent result. Science journalists occasionally report on spectacularly audacious scientific frauds, or frauds in papers that have already made the headlines. But you don’t expect fraud in the average paper you cover.

It might be scientifically misguided: flawed statistics, a gap in a proof, a misuse of concepts. Journalists aren’t usually equipped to ferret out these issues, though. Instead, this is handled in principle by peer review, and in practice by the scientific community outside of the peer review process.

Instead, for a scientific result, the most common negative judgement isn’t that it’s a lie, or a mistake. It’s that it’s boring.

And certainly, a good science journalist can judge a paper as boring. But there is a key difference between doing that, and judging a politician as crooked or a popular work of art as mediocre. You can write an article about the lying candidate for governor, or the letdown Tarantino movie. But if a scientific result is boring, and nobody else has covered it…then it isn’t newsworthy.

In science, people don’t usually publish their failures, their negative results, their ho-hum obvious conclusions. That fills the literature with only the successes, a phenomenon called publication bias. It also means, though, that scientists try to make their results sound more successful, more important and interesting, than they actually are. Some of the folks fighting the replication crisis have coined a term for this: they call it importance hacking.

The same incentives apply to journalists, especially freelancers. Starting out, it was far from clear that I could make enough to live on. I felt like I had to make every lead count, to find a newsworthy angle on every story idea I could find, because who knew when I would find another one? Over time, I learned to balance that pull better. Now that I’m making most of my income from consulting instead, the pressure has eased almost entirely: there are things I’m tempted to importance-hack for the sake of friends, but nothing that I need to importance-hack to stay in the black.

Doing journalism on the side may be good for me personally at the moment, but it’s not really a model. Much like we need career scientists, even if their work is sometimes boring, we need career journalists, even if they’re sometimes pressured to overhype.

So if we don’t want to incentivize science journalists to be science cheerleaders, what can we do instead?

In science, one way to address publication bias is with pre-registered studies. A scientist sets out what they plan to test, and a journal agrees to publish the result, no matter what it is. You could imagine something like this for science journalism. I once proposed a recurring column where every month I would cover a random paper from arXiv.org, explaining what it meant to accomplish. I get why the idea was turned down, but I still think about it.

In journalism, the arts offer the closest parallel with a different approach. There are many negative reviews of books, movies, and music, and most of them merely accuse the art of being boring, not evil. These exist because they focus on popular works that people pay attention to anyway, so that any negative coverage has someone to convince. You could imagine applying this model to science, though it could be a bit silly. I’m envisioning a journalist who writes an article every time Witten publishes, rating some papers impressive and others disappointing, the same way a music journalist might cover every Taylor Swift album.

Neither of these models are really satisfactory. You could imagine an even more adversarial model, where journalists run around accusing random scientists of wasting the government’s money, but that seems dramatically worse.

So I’m not sure. Science is weird, and hard to accurately value: if we knew how much something mattered already, it would be engineering, not science. Journalism is weird: it’s public-facing research, where the public facing is the whole point. Their combination? Even weirder.

Hype, Incentives, and Culture

To be clear, hype isn’t just lying.

We have a word for when someone lies to convince someone else to pay them, and that word is fraud. Most of what we call hype doesn’t reach that bar.

Instead, hype lives in a gray zone of affect and metaphor.

Some hype is pure affect. It’s about the subjective details, it’s about mood. “This is amazing” isn’t a lie, or at least, isn’t a lie you can check. They might really be amazed!

Some hype relies on metaphor. A metaphor can’t really be a lie, because a metaphor is always incomplete. But a metaphor can certainly be misleading. It can associate something minor with something important, or add emotional valence that isn’t really warranted.

Hype lies in a gray zone…and precisely because it lives in a gray zone, not everything that looks like hype is intended to be type.

We think of hype as a consequence of incentives. Scientists hype their work to grant committees to get grants, and hype it more to the public for prestige. Companies hype their products to sell them, and their business plans to draw in investors.

But what looks like hype can also be language, and culture.

To many people in the rest of the world, the way Americans talk about almost everything is hype. Everything is bigger and nicer and cooler. This isn’t because Americans are under some sort of weird extra career incentives, though. It’s just how they expect to talk, how they learned to talk, how everyone around them normally talks.

Similarly, people in different industries are used to talking differently. Depending on what work you do, you interpret different metaphors in different ways. What might seem like an enthusiastic endorsement in one industry might be dismissive in another.

In the end, it takes two to communicate: a speaker, and an audience. Speakers want to get their audience excited, and hopefully, if they don’t want to hype, to understand something of the truth. That means understanding how the audience communicates enthusiasm, and how it differs from the speaker. It means understanding language, and culture.

Bonus info for Reversible Computing and Megastructures

After some delay, a bonus info post!

At FirstPrinciples.org, I had a piece covering work by engineering professor Colin McInnes on stability of Dyson spheres and ringworlds. This was a fun one to cover, mostly because of how it straddles the borderline between science fiction and practical physics and engineering. McInnes’s claim to fame is work on solar sails, which seem like a paradigmatic example of that kind of thing: a common sci-fi theme that’s surprisingly viable. His work on stability was interesting to me because it’s the kind of work that a century and a half ago would have been paradigmatic physics. Now, though, very few physicists work on orbital mechanics, and a lot of the core questions have passed on to engineering. It’s fascinating to see how these classic old problems can still have undiscovered solutions, and how the people best equipped to find them now are tinkerers practicing their tools instead of cutting-edge mathematicians.

At Quanta Magazine, I had a piece about reversible computing. Readers may remember I had another piece on that topic at the end of March, a profile on the startup Vaire Computing at FirstPrinciples.org. That piece talked about FirstPrinciples, but didn’t say much about reversible computing. I figured I’d combine the “bonus info” for both posts here.

Neither piece went into much detail about the engineering involved, as it didn’t really make sense in either venue. One thing that amused me a bit is that the core technology that drove Vaire into action is something that actually should be very familiar to a physics or engineering student: a resonator. Theirs is obviously quite a bit more sophisticated than the base model, but at its heart it’s doing the same thing: storing charge and controlling frequency. It turns out that those are both essential to making reversible computers work: you need to store charge so it isn’t lost to ground when you empty a transistor, and you need to control the frequency so you can have waves with gentle transitions instead of the more sharp corners of the waves used in normal computers, thus wasting less heat in rapid changes of voltage. Vaire recently announced they’re getting 50% charge recovery from their test chips, and they’re working on raising that number.

Originally, the Quanta piece was focused more on reversible programming than energy use, as the energy angle seemed a bit more physics-focused than their computer science desk usually goes. The emphasis ended up changing as I worked on the draft, but it meant that an interesting parallel story got lost on the cutting-room floor. There’s a community of people who study reversible computing not from the engineering side, but from the computer science side, studying reversible logic and reversible programming languages. It’s a pursuit that goes back to the 1980’s, where at Caltech around when Feynman was teaching his course on the physics of computing a group of students were figuring out how to set up a reversible programming language. Called Janus, they sent their creation to Landauer, and the letter ended up with Michael Frank after Landauer died. There’s a lovely quote from it regarding their motivation: “We did it out of curiosity over whether such an odd animal as this was possible, and because we were interested in knowing where we put information when we programmed. Janus forced us to pay attention to where our bits went since none could be thrown away.”

Being forced to pay attention to information, in turn, is what has animated the computer science side of the reversible computing community. There are applications to debugging, where you can run code backwards when it gets stuck, to encryption and compression, where you want to be able to recover the information you hid away, and to security, where you want to keep track of information to make sure a hacker can’t figure out things they shouldn’t. Also, for a lot of these people, it’s just a fun puzzle. Early on my attention was caught by a paper by Hannah Earley describing a programming language called Alethe, a word you might recognize from the Greek word for truth, which literally means something like “not-forgetting”.

(Compression is particularly relevant for the “garbage data” you need to output in a reversible computation. If you want to add two numbers reversibly, naively you need to keep both input numbers and their output, but you can be more clever than that and just keep one of the inputs since you can subtract to find the other. There are a lot of substantially more clever tricks in this vein people have figured out over the years.)

I didn’t say anything about the other engineering approaches to reversible computing, that try to do something outside of traditional computer chips. There’s DNA computing, which tries to compute with a bunch of DNA in solution. There’s the old concept of ballistic reversible computing, where you imagine a computer that runs like a bunch of colliding billiard balls, conserving energy. Coordinating such a computer can be a nightmare, and early theoretical ideas were shown to be disrupted by something as tiny as a few stray photons from a distant star. But people like Frank figured out ways around the coordination problem, and groups have experimented with superconductors as places to toss those billiard balls around. The early billiard-inspired designs also had a big impact on quantum computing, where you need reversible gates and the only irreversible operation is the measurement. The name “Toffoli” comes up a lot in quantum computing discussions, I hadn’t known before this that Toffoli gates were originally for reversible computing in general, not specifically quantum computing.

Finally, I only gestured at the sci-fi angle. For reversible computing’s die-hards, it isn’t just a way to make efficient computers now. It’s the ultimate future of the technology, the kind of energy-efficiency civilization will need when we’re covering stars with shells of “computronium” full of busy joyous artificial minds.

And now that I think about it, they should chat with McInnes. He can tell them the kinds of stars they should build around.

Branching Out, and Some Ground Rules

In January, my time at the Niels Bohr Institute ended. Instead of supporting myself by doing science, as I’d done the last thirteen or so years, I started making a living by writing, doing science journalism.

That work picked up. My readers here have seen a few of the pieces already, but there are lots more in the pipeline, getting refined by editors or waiting to be published. It’s given me a bit of income, and a lot of visibility.

That visibility, in turn, has given me new options. It turns out that magazines aren’t the only companies interested in science writing, and journalism isn’t the only way to write for a living. Companies that invest in science want a different kind of writing, one that builds their reputation both with the public and with the scientific community. And as I’ve discovered, if you have enough of a track record, some of those companies will reach out to you.

So I’m branching out, from science journalism to science communications consulting, advising companies how to communicate science. I’ve started working with an exciting client, with big plans for the future. If you follow me on LinkedIn, you’ll have seen a bit about who they are and what I’ll be doing for them.

Here on the blog, I’d like to maintain a bit more separation. Blogging is closer to journalism, and in journalism, one ought to be careful about conflicts of interest. The advice I’ve gotten is that it’s good to establish some ground rules, separating my communications work from my journalistic work, since I intend to keep doing both.

So without further ado, my conflict of interest rules:

  • I will not write in a journalistic capacity about my consulting clients, or their direct competitors.
  • I will not write in a journalistic capacity about the technology my clients are investing in, except in extremely general terms. (For example, most businesses right now are investing in AI. I’ll still write about AI in general, but not about any particular AI technologies my clients are pursuing.)
  • I will more generally maintain a distinction between areas I cover journalistically and areas where I consult. Right now, this means I avoid writing in a journalistic capacity about:
    • Health/biomedical topics
    • Neuroscience
    • Advanced sensors for medical applications

I plan to update these rules over time as I get a better feeling for what kinds of conflict of interest risks I face and what my clients are comfortable with. I now have a Page for this linked in the top menu, clients and editors can check there to see my current conflict of interest rules.

There Is No Shortcut to Saying What You Mean

Blogger Andrew Oh-Willeke of Dispatches from Turtle Island pointed me to an editorial in Science about the phrase scientific consensus.

The editorial argues that by referring to conclusions like the existence of climate change or vaccine safety as “the scientific consensus”, communicators have inadvertently fanned the flames of distrust. By emphasizing agreement between scientists, the phrase “scientific consensus” leaves open the question of how that consensus was reached. More conspiracy-minded people imagine shady backroom deals and corrupt payouts, while the more realistic blame incentives and groupthink. If you disagree with “the scientific consensus”, you may thus decide the best way forward is to silence those pesky scientists.

(The link to current events is left as an exercise to the reader, to comment on elsewhere. As usual, please no explicit discussion of politics on this blog!)

Instead of “scientific consensus”, the editorial suggests another term, convergence of evidence. The idea is that by centering the evidence instead of the scientists, the phrase would make it clear that these conclusions are justified by something more than social pressures, and will remain even if the scientists promoting them are silenced.

Oh-Willeke pointed me to another blog post responding to the editorial, which has a nice discussion of how the terms were used historically, showing their popularity over time. “Convergence of evidence” was more popular in the 1950’s, with a small surge in the late 90’s and early 2000’s. “Scientific consensus” rose in the 1980’s and 90’s, lining up with a time when social scientists were skeptical about science’s objectivity and wanted to explore the social reasons why scientists come to agreement. It then fell around the year 2000, before rising again, this time used instead by professional groups of scientists to emphasize their agreement on issues like climate change.

(The blog post then goes on to try to motivate the word “consilience” instead, on the rather thin basis that “convergence of evidence” isn’t interdisciplinary enough, which seems like a pretty silly objection. “Convergence” implies coming in from multiple directions, it’s already interdisciplinary!)

I appreciate “convergence of evidence”, it seems like a useful phrase. But I think the editorial is working from the wrong perspective, in trying to argue for which terms “we should use” in the first place.

Sometimes, as a scientist or an organization or a journalist, you want to emphasize evidence. Is it “a preponderance of evidence”, most but not all? Is it “overwhelming evidence”, evidence so powerful it is unlikely to ever be defeated? Or is it a “convergence of evidence”, evidence that came in slowly from multiple paths, each independent route making a coincidence that much less likely?

But sometimes, you want to emphasize the judgement of the scientists themselves.

Sometimes when scientists agree, they’re working not from evidence but from personal experience: feelings of which kinds of research pan out and which don’t, or shared philosophies that sit deep in how they conceive their discipline. Describing physicists’ reasons for expecting supersymmetry before the LHC turned on as a convergence of evidence would be inaccurate. Describing it as having been a (not unanimous) consensus gets much closer to the truth.

Sometimes, scientists do have evidence, but as a journalist, you can’t evaluate its strength. You note some controversy, you can follow some of the arguments, but ultimately you have to be honest about how you got the information. And sometimes, that will be because it’s what most of the responsible scientists you talked to agreed on: scientific consensus.

As science communicators, we care about telling the truth (as much as we ever can, at any rate). As a result, we cannot adopt blanket rules of thumb. We cannot say, “we as a community are using this term now”. The only responsible thing we can do is to think about each individual word. We need to decide what we actually mean, to read widely and learn from experience, to find which words express our case in a way that is both convincing and accurate. There’s no shortcut to that, no formula where you just “use the right words” and everything turns out fine. You have to do the work, and hope it’s enough.

This Week, at FirstPrinciples.org

I’ve got a piece out this week in a new venue: FirstPrinciples.org, where I’ve written a profile of a startup called Vaire Computing.

Vaire works on reversible computing, an idea that tries to leverage thermodynamics to make a computer that wastes as little heat as possible. While I learned a lot of fun things that didn’t make it into the piece…I’m not going to tell you them this week! That’s because I’m working on another piece about reversible computing, focused on a different aspect of the field. When that piece is out I’ll have a big “bonus material post” talking about what I learned writing both pieces.

This week, instead, the bonus material is about FirstPrinciples.org itself, where you’ll be seeing me write more often in future. The First Principles Foundation was founded by Ildar Shar, a Canadian tech entrepreneur who thinks that physics is pretty cool. (Good taste that!) His foundation aims to support scientific progress, especially in addressing the big, fundamental questions. They give grants, analyze research trends, build scientific productivity tools…and most relevantly for me, publish science news on their website, in a section called the Hub.

The first time I glanced through the Hub, it was clear that FirstPrinciples and I have a lot in common. Like me, they’re interested both in scientific accomplishments and in the human infrastructure that makes them possible. They’ve interviewed figures in the open access movement, like the creators of arXiv and SciPost. On the science side, they mix coverage of the mainstream and reputable with outsiders challenging the status quo, and hot news topics with explainers of key concepts. They’re still new, and still figuring out what they want to be. But from my glimpse on the way, it looks like they’re going somewhere good.

Science Journalism Tasting Notes

When you’ve done a lot of science communication you start to see patterns. You notice the choices people make when they write a public talk or a TV script, the different goals and practical constraints that shape a piece. I’ve likened it to watching an old kung fu movie and seeing where the wires are.

I don’t have a lot of experience doing science journalism, I can’t see the wires yet. But I’m starting to notice things, subtle elements like notes at a wine-tasting. Just like science communication by academics, science journalism is shaped by a variety of different goals.

First, there’s the need for news to be “new”. A classic news story is about something that happened recently, or even something that’s happening right now. Historical stories usually only show up as new “revelations”, something the journalist or a researcher recently dug up. This isn’t a strict requirement, and it seems looser in science journalism than in other types of journalism: sometimes you can have a piece on something cool the audience might not know, even if it’s not “new”. But it shapes how things are covered, it means that a piece on something old will often have something tying it back to a recent paper or an ongoing research topic.

Then, a news story should usually also be a “story”. Science communication can sometimes involve a grab-bag of different topics, like a TED talk that shows off a few different examples. Journalistic pieces often try to deliver one core message, with details that don’t fit the narrative needing to wait for another piece where they fit better. You might be tempted to round this off to saying that journalists are better writers than academics, since it’s easier for a reader to absorb one message than many. But I think it also ties to the structure. Journalists do have content with multiple messages, it just usually is not published as one story, but a thematic collection of stories.

Combining those two goals, there’s a tendency for news to focus on what happened. “First they had the idea, then there were challenges, then they made their discovery, now they look to the future.” You can’t just do that, though, because of another goal: pedagogy. Your audience doesn’t know everything you know. In order for them to understand what happened, there are often other things they have to understand. In non-science news, this can sometimes be brief, a paragraph that gives the background for people who have been “living under a rock”. In science news, there’s a lot more to explain. You have to teach something, and teaching well can demand a structure very different from the one-step-at a time narrative of what happened. Balancing these two is tricky, and it’s something I’m still learning how to do, as can be attested by the editors who’ve had to rearrange some of my pieces to make the story flow better.

News in general cares about being independent, about journalists who figure out the story and tell the truth regardless of what the people in power are saying. Science news is strange because, if a scientist gets covered at all, it’s almost always positive. Aside from the occasional scandal or replication crisis, science news tends to portray scientific developments as valuable, “good news” rather than “bad news”. If you’re a politician or a company, hearing from a journalist might make you worry. If you say the wrong thing, you might come off badly. If you’re a scientist, your biggest worry is that a journalist might twist your words into a falsehood that makes your work sound too good. On the other hand, a journalist who regularly publishes negative things about scientists would probably have a hard time finding scientists to talk to! There are basic journalistic ethics questions here that one probably learns about at journalism school and we who sneak in with no training have to learn another way.

These are the flavors I’ve tasted so far: novelty and narrative vs. education, positivity vs. accuracy. I’ll doubtless see more over the years, and go from someone who kind of knows what they’re doing to someone who can mentor others. With that in mind, I should get to writing!

Ways Freelance Journalism Is Different From Academic Writing

A while back, I was surprised when I saw the writer of a well-researched webcomic assume that academics are paid for their articles. I ended up writing a post explaining how academic publishing actually works.

Now that I’m out of academia, I’m noticing some confusion on the other side. I’m doing freelance journalism, and the academics I talk to tend to have some common misunderstandings. So academics, this post is for you: a FAQ of questions I’ve been asked about freelance journalism. Freelance journalism is more varied than academia, and I’ve only been doing it a little while, so all of my answers will be limited to my experience.

Q: What happens first? Do they ask you to write something? Do you write an article and send it to them?

Academics are used to writing an article, then sending it to a journal, which sends it out to reviewers to decide whether to accept it. In freelance journalism in my experience, you almost never write an article before it’s accepted. (I can think of one exception I’ve run into, and that was for an opinion piece.)

Sometimes, an editor reaches out to a freelancer and asks them to take on an assignment to write a particular sort of article. This happens more freelancers that have been working with particular editors for a long time. I’m new to this, so the majority of the time I have to “pitch”. That means I email an editor describing the kind of piece I want to write. I give a short description of the topic and why it’s interesting. If the editor is interested, they’ll ask some follow-up questions, then tell me what they want me to focus on, how long the piece should be, and how much they’ll pay me. (The last two are related, many places pay by the word.) After that, I can write a draft.

Q: Wait, you’re paid by the word? Then why not make your articles super long, like Victor Hugo?

I’m paid per word assigned, not per word in the finished piece. The piece doesn’t have to strictly stick to the word limit, but it should be roughly the right size, and I work with the editor to try to get it there. In practice, places seem to have a few standard size ranges and internal terminology for what they are (“blog”, “essay”, “short news”, “feature”). These aren’t always the same as the categories readers see online. Some places have a web page listing these categories for prospective freelancers, but many don’t, so you have to either infer them from the lengths of articles online or learn them over time from the editors.

Q: Why didn’t you mention this important person or idea?

Because pieces pay more by the word, it’s easier as a freelancer to sell shorter pieces than longer ones. For science news, favoring shorter pieces also makes some pedagogical sense. People usually take away only a few key messages from a piece, if you try to pack in too much you run a serious risk of losing people. After I’ve submitted a draft, I work with the editor to polish it, and usually that means cutting off side-stories and “by-the-ways” to make the key points as vivid as possible.

Q: Do you do those cool illustrations?

Academia has a big focus on individual merit. The expectation is that when you write something, you do almost all of the work yourself, to the extent that more programming-heavy fields like physics and math do their own typesetting.

Industry, including journalism, is more comfortable delegating. Places will generally have someone on-staff to handle illustrations. I suggest diagrams that could be helpful to the piece and do a sketch of what they could look like, but it’s someone else’s job to turn that into nice readable graphic design.

Q: Why is the title like that? Why doesn’t that sound like you?

Editors in journalistic outlets are much more involved than in academic journals. Editors won’t just suggest edits, they’ll change wording directly and even input full sentences of their own. The title and subtitle of a piece in particular can change a lot (in part because they impact SEO), and in some places these can be changed by the editor quite late in the process. I’ve had a few pieces whose title changed after I’d signed off on them, or even after they first appeared.

Q: Are your pieces peer-reviewed?

The news doesn’t have peer review, no. Some places, like Quanta Magazine, do fact-checking. Quanta pays independent fact-checkers for longer pieces, while for shorter pieces it’s the writer’s job to verify key facts, confirming dates and the accuracy of quotes.

Q: Can you show me the piece before it’s published, so I can check it?

That’s almost never an option. Journalists tend to have strict rules about showing a piece before it’s published, related to more political areas where they want to preserve the ability to surprise wrongdoers and the independence to find their own opinions. Science news seems like it shouldn’t require this kind of thing as much, it’s not like we normally write hit pieces. But we’re not publicists either.

In a few cases, I’ve had people who were worried about something being conveyed incorrectly, or misleadingly. For those, I offer to do more in the fact-checking stage. I can sometimes show you quotes or paraphrase how I’m describing something, to check whether I’m getting something wrong. But under no circumstances can I show you the full text.

Q: What can I do to make it more likely I’ll get quoted?

Pieces are short, and written for a general, if educated, audience. Long quotes are harder to use because they eat into word count, and quotes with technical terms are harder to use because we try to limit the number of terms we ask the reader to remember. Quotes that mention a lot of concepts can be harder to find a place for, too: concepts are introduced gradually over the piece, so a quote that mentions almost everything that comes up will only make sense to the reader at the very end.

In a science news piece, quotes can serve a couple different roles. They can give authority, an expert’s judgement confirming that something is important or real. They can convey excitement, letting the reader see a scientist’s emotions. And sometimes, they can give an explanation. This last only happens when the explanation is very efficient and clear. If the journalist can give a better explanation, they’re likely to use that instead.

So if you want to be quoted, keep that in mind. Try to say things that are short and don’t use a lot of technical jargon or bring in too many concepts at once. Convey judgement, which things are important and why, and convey passion, what drives you and excited you about a topic. I am allowed to edit quotes down, so I can take a piece of a longer quote that’s cleaner or cut a long list of examples from an otherwise compelling statement. I can correct grammar and get rid of filler words and obvious mistakes. But I can’t put words in your mouth, I have to work with what you actually said, and if you don’t say anything I can use then you won’t get quoted.