Have you seen “population pyramids“? They’re diagrams that show snapshots of a population, how many people there are of each age. They can give you an intuition for how a population is changing, and where the biggest hurdles are to survival.
I wonder what population pyramids would look like for academia. In each field and subfield, how many people are PhD students, postdocs, and faculty?
If every PhD student was guaranteed to become faculty, and the number of faculty stayed fixed, you could roughly estimate what this pyramid would have to look like. An estimate for the US might take an average 7-year PhD, two postdoc positions at 3 years each, followed by a 30-year career as faculty, and estimate the proportions of each stage based on proportions of each scholar’s life. So you’d have roughly one PhD student per four faculty, and one postdoc per five. In Europe, with three-year PhDs, the proportion of PhD students decreases further, and in a world where people are still doing at least two postdocs you expect significantly more postdocs than PhDs.
Of course, the world doesn’t look like that at all, because the assumptions are wrong.
The number of faculty doesn’t stay fixed, for one. When population is growing in the wider world, new universities open in new population centers, and existing universities find ways to expand. When population falls, enrollments shrink, and universities cut back.
But this is a minor perturbation compared to the much more obvious difference: most PhD students do not stay in academia. A single professor may mentor many PhDs at the same time, and potentially several postdocs. Most of those people aren’t staying.
You can imagine someone trying to fix this by fiat, setting down a fixed ratio between PhD students, postdocs, and faculty. I’ve seen partial attempts at this. When I applied for grants at the University of Copenhagen, I was told I had to budget at least half of my hires as PhD students, not postdocs, which makes me wonder if they were trying to force careers to default to one postdoc position, rather than two. More likely, they hadn’t thought about it.
Zero attrition doesn’t really make sense, anyway. Some people are genuinely better off leaving: they made a mistake when they started, or they changed over time. Sometimes new professions arise, and the best way in is from an unexpected direction. I’ve talked to people who started data science work in the early days, before there really were degrees in it, who felt a physics PhD had been the best route possible to that world. Similarly, some move into policy, or academic administration, or found a startup. And if we think there are actually criteria to choose better or worse academics (which I’m a bit skeptical of), then presumably some people are simply not good enough, and trying to filter them out earlier is irresponsible when they still don’t have enough of a track record to really judge.
How much attrition should be there is the big question, and one I don’t have an answer for. In academia, when so much of these decisions are made by just a few organizations, it seems like a question that someone should have a well-considered answer to. But so far, it’s unclear to me that anyone does.
It also makes me think, a bit, about how these population pyramids work in industry. There there is no overall control. Instead, there’s a web of incentives, many of them decades-delayed from the behavior they’re meant to influence, leaving each individual to try to predict as well as they can. If companies only hire senior engineers, no-one gets a chance to start a career, and the population of senior engineers dries up. Eventually, those companies have to settle for junior engineers. (Or, I guess, ex-academics.) It sounds like it should lead to the kind of behavior biologists model in predators and prey, wild swings in population modeled by a differential equation. But maybe there’s something that tamps down those wild swings.
