In Scientific American, With a Piece on Vacuum Decay

I had a piece in Scientific American last week. It’s paywalled, but if you’re a subscriber there you can see it, or you can buy the print magazine.

(I also had two pieces out in other outlets this week. I’ll be saying more about them…in a couple weeks.)

The Scientific American piece is about an apocalyptic particle physics scenario called vacuum decay. It’s a topic I covered last year in Quanta Magazine, an unlikely event where the Higgs field which gives fundamental particles their mass changes value, suddenly making all other particles much more massive and changing physics as we know it. It’s a change that physicists think would start as a small bubble and spread at (almost) the speed of light, covering the universe.

What I wrote for Quanta was a short news piece covering a small adjustment to the calculation, one that made the chance of vacuum decay slightly more likely. (But still mind-bogglingly small, to be clear.)

Scientific American asked for a longer piece, and that gave me space to dig deeper. I was able to say more about how vacuum decay works, with a few metaphors that I think should make it a lot easier to understand. I also got to learn about some new developments, in particular, an interesting story about how tiny primordial black holes could make vacuum decay dramatically more likely.

One thing that was a bit too complicated to talk about were the puzzles involved in trying to calculate these chances. In the article, I mention a calculation of the chance of vacuum decay by a team including Matthew Schwartz. That calculation wasn’t the first to estimate the chance of vacuum decay, and it’s not the most recent update either. Instead, I picked it because Schwartz’s team approached the question in what struck me as a more reliable way, trying to cut through confusion by asking the most basic question you can in a quantum theory: given that now you observe X, what’s the chance that later you observe Y? Figuring out how to turn vacuum decay into that kind of question correctly is tricky (for example, you need to include the possibility that vacuum decay happens, then reverses, then happens again).

The calculations of black holes speeding things up didn’t work things out in quite as much detail. I like to think I’ve made a small contribution by motivating them to look at Schwartz’s work, which might spawn a more rigorous calculation in future. When I talked to Schwartz, he wasn’t even sure whether the picture of a bubble forming in one place and spreading at light speed is correct: he’d calculated the chance of the initial decay, but hadn’t found a similarly rigorous way to think about the aftermath. So even more than the uncertainty I talk about in the piece, the questions about new physics and probability, there is even some doubt about whether the whole picture really works the way we’ve been imagining it.

That makes for a murky topic! But it’s also a flashy one, a compelling story for science fiction and the public imagination, and yeah, another motivation to get high-precision measurements of the Higgs and top quark from future colliders! (If maybe not quite the way this guy said it.)

Leave a comment! If it's your first time, it will go into moderation.