Bonus Material for “How Hans Bethe Stumbled Upon Perfect Quantum Theories”

I had an article last week in Quanta Magazine. It’s a piece about something called the Bethe ansatz, a method in mathematical physics that was discovered by Hans Bethe in the 1930’s, but which only really started being understood and appreciated around the 1960’s. Since then it’s become a key tool, used in theoretical investigations in areas from condensed matter to quantum gravity. In this post, I thought I’d say a bit about the story behind the piece and give some bonus material that didn’t fit.

When I first decided to do the piece I reached out to Jules Lamers. We were briefly office-mates when I worked in France, where he was giving a short course on the Bethe ansatz and the methods that sprung from it. It turned out he had also been thinking about writing a piece on the subject, and we considered co-writing for a bit, but that didn’t work for Quanta. He helped me a huge amount with understanding the history of the subject and tracking down the right sources. If you’re a physicist who wants to learn about these things, I recommend his lecture notes. And if you’re a non-physicist who wants to know more, I hope he gets a chance to write a longer popular-audience piece on the topic!

If you clicked through to Jules’s lecture notes, you’d see the word “Bethe ansatz” doesn’t appear in the title. Instead, you’d see the phrase “quantum integrability”. In classical physics, an “integrable” system is one where you can calculate what will happen by doing an integral, essentially letting you “solve” any problem completely. Systems you can describe with the Bethe ansatz are solvable in a more complicated quantum sense, so they get called “quantum integrable”. There’s a whole research field that studies these quantum integrable systems.

My piece ended up rushing through the history of the field. After talking about Bethe’s original discovery, I jumped ahead to ice. The Bethe ansatz was first used to think about ice in the 1960’s, but the developments I mentioned leading up to it, where experimenters noticed extra variability and theorists explained it with the positions of hydrogen atoms, happened earlier, in the 1930’s. (Thanks to the commenter who pointed out that this was confusing!) Baxter gets a starring role in this section and had an important role in tying things together, but other people (Lieb and Sutherland) were involved earlier, showing that the Bethe ansatz indeed could be used with thin sheets of ice. This era had a bunch of other big names that I didn’t have space to talk about: C. N. Yang makes an appearance, and while Faddeev comes up later, I didn’t mention that he had a starring role in the 1970’s in understanding the connection to classical integrability and proposing a mathematical structure to understand what links all these different integrable theories together.

I vaguely gestured at black holes and quantum gravity, but didn’t have space for more than that. The connection there is to a topic you might have heard of before if you’ve read about string theory, called AdS/CFT, a connection between two kinds of world that are secretly the same: a toy model of gravity called Anti-de Sitter space (AdS) and a theory without gravity that looks the same at any scale (called a Conformal Field Theory, or CFT). It turns out that in the most prominent example of this, the theory without gravity is integrable! In fact, it’s a theory I spent a lot of time working with back in my research days, called N=4 super Yang-Mills. This theory is kind of like QCD, and in some sense it has integrability for similar reasons to those that Feynman hoped for and Korchemsky and Faddeev found. But it actually goes much farther, outside of the high-energy approximation where Korchemsky and Faddeev’s result works, and in principle seems to include everything you might want to know about the theory. Nowadays, people are using it to investigate the toy model of quantum gravity, hoping to get insights about quantum gravity in general.

One thing I didn’t get a chance to mention at all is the connection to quantum computing. People are trying to build a quantum computer with carefully-cooled atoms. It’s important to test whether the quantum computer functions well enough, or if the quantum states aren’t as perfect as they need to be. One way people have been testing this is with the Bethe ansatz: because it lets you calculate the behavior of special systems perfectly, you can set up your quantum computer to model a Bethe ansatz, and then check how close to the prediction your results are. You know that the theoretical result is complete, so any failure has to be due to an imperfection in your experiment.

I gave a quick teaser to a very active field, one that has fascinated a lot of prominent physicists and been applied in a wide variety of areas. I hope I’ve inspired you to learn more!

Leave a comment! If it's your first time, it will go into moderation.