I Ain’t Afraid of No-Ghost Theorems

In honor of Halloween this week, let me say a bit about the spookiest term in physics: ghosts.

In particle physics, we talk about the universe in terms of quantum fields. There is an electron field for electrons, a gluon field for gluons, a Higgs field for Higgs bosons. The simplest fields, for the simplest particles, can be described in terms of just a single number at each point in space and time, a value describing how strong the field is. More complicated fields require more numbers.

Most of the fundamental forces have what we call vector fields. They’re called this because they are often described with vectors, lists of numbers that identify a direction in space and time. But these vectors actually contain too many numbers.

These extra numbers have to be tidied up in some way in order to describe vector fields in the real world, like the electromagnetic field or the gluon field of the strong nuclear force. There are a number of tricks, but the nicest is usually to add some extra particles called ghosts. Ghosts are designed to cancel out the extra numbers in a vector, leaving the right description for a vector field. They’re set up mathematically such that they can never be observed, they’re just a mathematical trick.

Mathematical tricks aren’t all that spooky (unless you’re scared of mathematics itself, anyway). But in physics, ghosts can take on a spookier role as well.

In order to do their job cancelling those numbers, ghosts need to function as a kind of opposite to a normal particle, a sort of undead particle. Normal particles have kinetic energy: as they go faster and faster, they have more and more energy. Said another way, it takes more and more energy to make them go faster. Ghosts have negative kinetic energy: the faster they go, the less energy they have.

If ghosts are just a mathematical trick, that’s fine, they’ll do their job and cancel out what they’re supposed to. But sometimes, physicists accidentally write down a theory where the ghosts aren’t just a trick cancelling something out, but real particles you could detect, without anything to hide them away.

In a theory where ghosts really exist, the universe stops making sense. The universe defaults to the lowest energy it can reach. If making a ghost particle go faster reduces its energy, then the universe will make ghost particles go faster and faster, and make more and more ghost particles, until everything is jam-packed with super-speedy ghosts unto infinity, never-ending because it’s always possible to reduce the energy by adding more ghosts.

The absence of ghosts, then, is a requirement for a sensible theory. People prove theorems showing that their new ideas don’t create ghosts. And if your theory does start seeing ghosts…well, that’s the spookiest omen of all: an omen that your theory is wrong.

Leave a comment! If it's your first time, it will go into moderation.