(Not At) Amplitudes 2024 at the IAS

For over a decade, I studied scattering amplitudes, the formulas particle physicists use to find the probability that particles collide, or scatter, in different ways. I went to Amplitudes, the field’s big yearly conference, every year from 2015 to 2023.

This year is different. I’m on the way out of the field, looking for my next steps. Meanwhile, Amplitudes 2024 is going full speed ahead at the Institute for Advanced Study in Princeton.

With poster art that is, as the kids probably don’t say anymore, “on fleek”

The talks aren’t live-streamed this year, but they are posting slides, and they will be posting recordings. Since a few of my readers are interested in new amplitudes developments, I’ve been paging through the posted slides looking for interesting highlights. So far, I’ve only seen slides from the first few days: I will probably write about the later talks in a future post.

Each day of Amplitudes this year has two 45-minute “review talks”, one first thing in the morning and the other first thing after lunch. I put “review talks” in quotes because they vary a lot, between talks that try to introduce a topic for the rest of the conference to talks that mostly focus on the speaker’s own research. Lorenzo Tancredi’s talk was of the former type, an introduction to the many steps that go into making predictions for the LHC, with a focus on those topics where amplitudeologists have made progress. The talk opens with the type of motivation I’d been writing in grant and job applications over the last few years (we don’t know most of the properties of the Higgs yet! To measure them, we’ll need to calculate amplitudes with massive particles to high precision!), before moving into a review of the challenges and approaches in different steps of these calculations. While Tancredi apologizes in advance that the talk may be biased, I found it surprisingly complete: if you want to get an idea of the current state of the “LHC amplitudes pipeline”, his slides are a good place to start.

Tancredi’s talk serves as introduction for a variety of LHC-focused talks, some later that day and some later in the week. Federica Devoto discussed high-energy quarks while Chiara Signorile-Signorile and George Sterman showed advances in handling of low-energy particles. Xiaofeng Xu has a program that helps predict symbol letters, the building-blocks of scattering amplitudes that can be used to reconstruct or build up the whole thing, while Samuel Abreu talked about a tricky state-of-the-art case where Xu’s program misses part of the answer.

Later Monday morning veered away from the LHC to focus on more toy-model theories. Renata Kallosh’s talk in particular caught my attention. This blog is named after a long-standing question in amplitudes: will the four-graviton amplitude in N=8 supergravity diverge at seven loops in four dimensions? This seemingly arcane question is deep down a question about what is actually required for a successful theory of quantum gravity, and in particular whether some of the virtues of string theory can be captured by a simpler theory instead. Answering the question requires a prodigious calculation, and the more “loops” are involved the more difficult it is. Six years ago, the calculation got to five loops, and it hasn’t passed that mark since then. That five-loop calculation gave some reason for pessimism, a nice pattern at lower loops that stopped applying at five.

Kallosh thinks she has an idea of what to expect. She’s noticed a symmetry in supergravity, one that hadn’t previously been taken into account. She thinks that symmetry should keep N=8 supergravity from diverging on schedule…but only in exactly four dimensions. All of the lower-loop calculations in N=8 supergravity diverged in higher dimensions than four, and it seems like with this new symmetry she understands why. Her suggestion is to focus on other four-dimensional calculations. If seven loops is still too hard, then dialing back the amount of supersymmetry from N=8 to something lower should let her confirm her suspicions. Already a while back N=5 supergravity was found to diverge later than expected in four dimensions. She wants to know whether that pattern continues.

(Her backup slides also have a fun historical point: in dimensions greater than four, you can’t get elliptical planetary orbits. So four dimensions is special for our style of life.)

Other talks on Monday included a talk by Zahra Zahraee on progress towards “solving” the field’s favorite toy model, N=4 super Yang-Mills. Christian Copetti talked about the work I mentioned here, while Meta employee François Charlton’s “review talk” dealt with his work applying machine learning techniques to “translate” between questions in mathematics and their answers. In particular, he reported progress with my current boss Matthias Wilhelm and frequent collaborator and mentor Lance Dixon on using transformers to guess high-loop formulas in N=4 super Yang-Mills. They have an interesting proof of principle now, but it will probably still be a while until they can use the method to predict something beyond the state of the art.

In the meantime at least they have some hilarious AI-generated images

Tuesday’s review by Ian Moult was genuinely a review, but of a topic not otherwise covered at the conference, that of “detector observables”. The idea is that rather than talking about which individual particles are detected, one can ask questions that make more sense in terms of the experimental setup, like asking about the amounts of energy deposited in different detectors. This type of story has gone from an idle observation by theorists to a full research program, with theorists and experimentalists in active dialogue.

Natalia Toro brought up that, while we say each particle has a definite spin, that may not actually be the case. Particles with so-called “continuous spins” can masquerade as particles with a definite integer spin at lower energies. Toro and Schuster promoted this view of particles ten years ago, but now can make a bit more sense of it, including understanding how continuous-spin particles can interact.

The rest of Tuesday continued to be a bit of a grab-bag. Yael Shadmi talked about applying amplitudes techniques to Effective Field Theory calculations, while Franziska Porkert talked about a Feynman diagram involving two different elliptic curves. Interestingly (well, to me at least), the curves never appear “together”, you can represent the diagram as a sum of terms involving one curve and terms involving the other, much simpler than it could have been!

Tuesday afternoon’s review talk by Iain Stewart was one of those “guest from an adjacent field” talks, in this case from an approach called SCET, and at first glance didn’t seem to do much to reach out to the non-SCET people in the audience. Frequent past collaborator of mine Andrew McLeod showed off a new set of relations between singularities of amplitudes, found by digging in to the structure of the equations discovered by Landau that control this behavior. He and his collaborators are proposing a new way to keep track of these things involving “minimal cuts”, a clear pun on the “maximal cuts” that have been of great use to other parts of the community. Whether this has more or less staying power than “negative geometries” remains to be seen.

Closing Tuesday, Shruti Paranjape showed there was more to discover about the simplest amplitudes, called “tree amplitudes”. By asking why these amplitudes are sometimes equal to zero, she was able to draw a connection to the “double-copy” structure that links the theory of the strong force and the theory of gravity. Johannes Henn’s talk noticed an intriguing pattern. A while back, I had looked into under which circumstances amplitudes were positive. Henn found that “positive” is an understatement. In a certain region, the amplitudes we were looking at turn out to not just be positive, but also always decreasing, and also with second derivative always positive. In fact, the derivatives appear to alternate, always with one sign or the other as one takes more derivatives. Henn is calling this unusual property “completely monotonous”, and trying to figure out how widely it holds.

Wednesday had a more mathematical theme. Bernd Sturmfels began with a “review talk” that largely focused on his own work on the space of curves with marked points, including a surprising analogy between amplitudes and the likelihood functions one needs to minimize in machine learning. Lauren Williams was the other “actual mathematician” of the day, and covered her work on various topics related to the amplituhedron.

The remaining talks on Wednesday were not literally by mathematicians, but were “mathematically informed”. Carolina Figueiredo and Hayden Lee talked about work with Nima Arkani-Hamed on different projects. Figueiredo’s talk covered recent developments in the “curve integral formalism”, a recent step in Nima’s quest to geometrize everything in sight, this time in the context of more realistic theories. The talk, which like those Nima gives used tablet-written slides, described new insights one can gain from this picture, including new pictures of how more complicated amplitudes can be built up of simpler ones. If you want to understand the curve integral formalism further, I’d actually suggest instead looking at Mark Spradlin’s slides from later that day. The second part of Spradlin’s talk dealt with an area Figueiredo marked for future research, including fermions in the curve integral picture. I confess I’m still not entirely sure what the curve integral formalism is good for, but Spradlin’s talk gave me a better idea of what it’s doing. (The first part of his talk was on a different topic, exploring the space of string-like amplitudes to figure out which ones are actually consistent.)

Hayden Lee’s talk mentions the emergence of time, but the actual story is a bit more technical. Lee and collaborators are looking at cosmological correlators, observables like scattering amplitudes but for cosmology. Evaluating these is challenging with standard techniques, but can be approached with some novel diagram-based rules which let the results be described in terms of the measurable quantities at the end in a kind of “amplituhedron-esque” way.

Aidan Herderschee and Mariana Carrillo González had talks on Wednesday on ways of dealing with curved space. Herderschee talked about how various amplitudes techniques need to be changed to deal with amplitudes in anti-de-Sitter space, with difference equations replacing differential equations and sum-by-parts relations replacing integration-by-parts relations. Carrillo González looked at curved space through the lens of a special kind of toy model theory called a self-dual theory, which allowed her to do cosmology-related calculations using a double-copy technique.

Finally, Stephen Sharpe had the second review talk on Wednesday. This was another “outside guest” talk, a discussion from someone who does Lattice QCD about how they have been using their methods to calculate scattering amplitudes. They seem to count the number of particles a bit differently than we do, I’m curious whether this came up in the question session.

2 thoughts on “(Not At) Amplitudes 2024 at the IAS

  1. Pingback: Bootstrapping the planar theory | N=4 Super-Yang-Mills Theory

Leave a comment! If it's your first time, it will go into moderation.