Stories Backwards and Forwards

You can always start with “once upon a time”…

I come up with tricks to make calculations in particle physics easier. That’s my one-sentence story, or my most common one. If I want to tell a longer story, I have more options.

Here’s one longer story:

I want to figure out what Nature is telling us. I want to take all the data we have access to that has anything to say about fundamental physics, every collider and gravitational wave telescope and ripple in the overall structure of the universe, and squeeze it as hard as I can until something comes out. I want to make sure we understand the implications of our current best theories as well as we can, to as high precision as we can, because I want to know whether they match what we see.

To do that, I am starting with a type of calculation I know how to do best. That’s both because I can make progress with it, and because it will be important for making these inferences, for testing our theories. I am following a hint in a theory that definitely does not describe the real world, one that is both simpler to work with and surprisingly complex, one that has a good track record, both for me and others, for advancing these calculations. And at the end of the day, I’ll make our ability to infer things from Nature that much better.

Here’s another:

Physicists, unknowing, proposed a kind of toy model, one often simpler to work with but not necessarily simpler to describe. Using this model, they pursued increasingly elaborate calculations, and time and time again, those calculations surprised them. The results were not random, not a disorderly mess of everything they could plausibly have gotten. Instead, they had structure, symmetries and patterns and mathematical properties that the physicists can’t seem to explain. If we can explain them, we will advance our knowledge of models and theories and ideas, geometry and combinatorics, learning more about the unexpected consequences of the rules we invent.

We can also help the physicists advance physics, of course. That’s a happy accident, but one that justifies the money and time, showing the rest of the world that understanding consequences of rules is still important and valuable.

These seem like very different stories, but they’re not so different. They change in order, physics then math or math then physics, backwards and forwards. By doing that, they change in emphasis, in where they’re putting glory and how they’re catching your attention. But at the end of the day, I’m investigating mathematical mysteries, and I’m advancing our ability to do precision physics.

(Maybe you think that my motivation must lie with one of these stories and not the other. One is “what I’m really doing”, the other is a lie made up for grant agencies.
Increasingly, I don’t think people work like that. If we are at heart stories, we’re retroactive stories. Our motivation day to day doesn’t follow one neat story or another. We move forward, we maybe have deep values underneath, but our accounts of “why” can and will change depending on context. We’re human, and thus as messy as that word should entail.)

I can tell more than two stories if I want to. I won’t here. But this is largely what I’m working on at the moment. In applying for grants, I need to get the details right, to sprinkle the right references and the right scientific arguments, but the broad story is equally important. I keep shuffling that story, a pile of not-quite-literal index cards, finding different orders and seeing how they sound, imagining my audience and thinking about what stories would work for them.

2 thoughts on “Stories Backwards and Forwards

  1. flippiefanus's avatarflippiefanus

    Interesting. It begs the question: is the reason why we think a toy model tells us anything about real physics the fact that it produces some high level of complexity? In my experience such a notion could be misleading. It is not that difficult to find toy models that produce lots of complexity. So, in itself, the tendency of something like that to lead to high levels of complexity does not guarantee it has anything to do with real physics.

    Like

    Reply
    1. 4gravitons's avatar4gravitons Post author

      Well, in this case it’s not that we use the toy model to infer things about real physics directly (though in some rare cases this happens, there’s an example here). Rather, it’s that the toy model tends to involve similar calculations to the real thing, so a calculational tool that works well for the toy model also usually works well for the full thing.

      This is admittedly not what people usually have in mind with toy models! Usually a toy model is some simplification of what nature is really doing, where you expect it to reproduce some behavior seen in nature. Here, it’s not a behavior that’s reproduced, but a type of calculation. I still tend to call it a toy model, but only because I don’t really have a better word for it.

      Like

      Reply

Leave a reply to 4gravitons Cancel reply