Last week was a birthday conference for one of the pioneers of my sub-field, Ettore Remiddi. I wasn’t there, but someone who was pointed me to some of the slides, including a talk by Stefano Laporta. For those of you who didn’t see my post a few weeks back, Laporta was one of Remiddi’s students, who developed one of the most important methods in our field and then vanished, spending ten years on an amazingly detailed calculation. Laporta’s talk covers more of the story, about what it was like to do precision calculations in that era.

“That era”, the 90’s through 2000’s, witnessed an enormous speedup in computers, and a corresponding speedup in what was possible. Laporta worked with Remiddi on the three-loop electron anomalous magnetic moment, something Remiddi had been working on since *1969*. When Laporta joined in 1989, twenty-one of the seventy-two diagrams needed had still not been computed. They would polish them off over the next seven years, before Laporta dove in to four loops. Twenty years later, he had that four-loop result to over a thousand digits.

One fascinating part of the talk is seeing how the computational techniques change over time, as language replaces language and computer clusters get involved. As a student, Laporta learns a lesson we all often need: that to avoid mistakes, we need to do as little by hand as possible, even for something as simple as copying a one-line formula. Looking at his review of others’ calculations, it’s remarkable how many theoretical results had to be dramatically corrected a few years down the line, and how much still might depend on theoretical precision.

Another theme was one of Remiddi suggesting something and Laporta doing something entirely different, and often much more productive. Whether it was using the arithmetic-geometric mean for an elliptic integral instead of Gaussian quadrature, or coming up with his namesake method, Laporta spent a lot of time going his own way, and Remiddi quickly learned to trust him.

There’s a lot more in the slides that’s worth reading, including a mention of one of this year’s Physics Nobelists. The whole thing is an interesting look at what it takes to press precision to the utmost, and dedicate years to getting something right.

### Like this:

Like Loading...

*Related*