How much can you trust general relativity?
On the one hand, you can read through a lovely Wikipedia article full of tests, explaining just how far and how precisely scientists have pushed their knowledge of space and time. On the other hand, you can trust GPS satellites.
As many of you may know, GPS wouldn’t work if we didn’t know about general relativity. In order for the GPS in your phone to know where you are, it has to compare signals from different satellites, each giving the location and time the signal was sent. To get an accurate result, the times measured on those satellites have to be adjusted: because of the lighter gravity they experience, time moves more quickly for them than for us down on Earth.
In a sense, general relativity gets tested every minute of every day, on every phone in the world. That’s pretty trustworthy! Any time that science is used in technology, it gets tested in this way. The ideas we can use are ideas that have shown they can perform, ideas which do what we expect again and again and again.
In another sense, though, GPS is a pretty bad test of general relativity. It tests one of general relativity’s simplest consequences, based on the Schwarzchild metric for how gravity behaves near a large massive object, and not to an incredibly high degree of precision. Gravity could still violate general relativity in a huge number of other ways, and GPS would still function. That’s why the other tests are valuable: if you want to be sure general relativity doesn’t break down, you need to test it under conditions that GPS doesn’t cover, and to higher precision.
Once you know to look for it, these layers of tests come up everywhere. You might see the occasional article talking about tests of quantum gravity. The tests they describe are very specific, testing a very general and basic question: does quantum mechanics make sense at all in a gravitational world? In contrast, most scientists who research quantum gravity don’t find that question very interesting: if gravity breaks quantum mechanics in a way those experiments could test, it’s hard to imagine it not leading to a huge suite of paradoxes. Instead, quantum gravity researchers tend to be interested in deeper problems with quantum gravity, distinctions between theories that don’t dramatically break with our existing ideas, but that because of that are much harder to test.
The easiest tests are important, especially when they come from technology: they tell us, on a basic level, what we can trust. But we need the hard tests too, because those are the tests that are most likely to reveal something new, and bring us to a new level of understanding.
