People are talking about colliders again.
This year, the European particle physics community is updating its shared plan for the future, the European Strategy for Particle Physics. A raft of proposals at the end of March stirred up a tail of public debate, focused on asking what sort of new particle collider should be built, and discussing potential reasons why.
That discussion, in turn, has got me thinking about experiments, and how they’re justified.
The purpose of experiments, and of science in general, is to learn something new. The more sure we are of something, the less reason there is to test it. Scientists don’t check whether the Sun rises every day. Like everyone else, they assume it will rise, and use that knowledge to learn other things.
You want your experiment to surprise you. But to design an experiment to surprise you, you run into a contradiction.
Suppose that every morning, you check whether the Sun rises. If it doesn’t, you will really be surprised! You’ll have made the discovery of the century! That’s a really exciting payoff, grant agencies should be lining up to pay for…
Well, is that actually likely to happen, though?
The same reasons it would be surprising if the Sun stopped rising are reasons why we shouldn’t expect the Sun to stop rising. A sunrise-checking observatory has incredibly high potential scientific reward…but an absurdly low chance of giving that reward.
Ok, so you can re-frame your experiment. You’re not hoping the Sun won’t rise, you’re observing the sunrise. You expect it to rise, almost guaranteed, so your experiment has an almost guaranteed payoff.
But what a small payoff! You saw exactly what you expected, there’s no science in that!
By either criterion, the “does the Sun rise” observatory is a stupid experiment. Real experiments operate in between the two extremes. They also mix motivations. Together, that leads to some interesting tensions.
What was the purpose of the Large Hadron Collider?
There were a few things physicists were pretty sure of, when they planned the LHC. Previous colliders had measured W bosons and Z bosons, and their properties made it clear that something was missing. If you could collide protons with enough energy, physicists were pretty sure you’d see the missing piece. Physicists had a reasonably plausible story for that missing piece, in the form of the Higgs boson. So physicists could be pretty sure they’d see something, and reasonably sure it would be the Higgs boson.
If physicists expected the Higgs boson, what was the point of the experiment?
First, physicists expected to see the Higgs boson, but they didn’t expect it to have the mass that it did. In fact, they didn’t know anything about the particle’s mass, besides that it should be low enough that the collider could produce it, and high enough that it hadn’t been detected before. The specific number? That was a surprise, and an almost-inevitable one. A rare creature, an almost-guaranteed scientific payoff.
I say almost, because there was a second point. The Higgs boson didn’t have to be there. In fact, it didn’t have to exist at all. There was a much bigger potential payoff, of noticing something very strange, something much more complicated than the straightforward theory most physicists had expected.
(Many people also argued for another almost-guaranteed payoff, and that got a lot more press. People talked about finding the origin of dark matter by discovering supersymmetric particles, which they argued was almost guaranteed due to a principle called naturalness. This is very important for understanding the history…but it’s an argument that many people feel has failed, and that isn’t showing up much anymore. So for this post, I’ll leave it to the side.)
This mix, of a guaranteed small surprise and the potential for a very large surprise, was a big part of what made the LHC make sense. The mix has changed a bit for people considering a new collider, and it’s making for a rougher conversation.
Like the LHC, most of the new collider proposals have a guaranteed payoff. The LHC could measure the mass of the Higgs, these new colliders will measure its “couplings”: how strongly it influences other particles and forces.
Unlike the LHC, though, this guarantee is not a guaranteed surprise. Before building the LHC, we did not know the mass of the Higgs, and we could not predict it. On the other hand, now we absolutely can predict the couplings of the Higgs. We have quite precise numbers, our expectation for what they should be based on a theory that so far has proven quite successful.
We aren’t certain, of course, just like physicists weren’t certain before. The Higgs boson might have many surprising properties, things that contradict our current best theory and usher in something new. These surprises could genuinely tell us something about some of the big questions, from the nature of dark matter to the universe’s balance of matter and antimatter to the stability of the laws of physics.
But of course, they also might not. We no longer have that rare creature, a guaranteed mild surprise, to hedge in case the big surprises fail. We have guaranteed observations, and experimenters will happily tell you about them…but no guaranteed surprises.
That’s a strange position to be in. And I’m not sure physicists have figured out what to do about it.

Congratulations on putting this into words
LikeLike