Amplitudes 2024, Continued

I’ve now had time to look over the rest of the slides from the Amplitudes 2024 conference, so I can say something about Thursday and Friday’s talks.

Thursday was gravity-focused. Zvi Bern’s review talk was actually a review, a tour of the state of the art in using amplitudes techniques to make predictions for gravitational wave physics. Bern emphasized that future experiments will require much more precision: two more orders of magnitude, which in our lingo amounts to two more “loops”. The current state of the art is three loops, but they’ve been hacking away at four, doing things piece by piece in a way that cleverly also yields publications (for example, they can do just the integrals needed for supergravity, which are simpler). Four loops here is the first time that the Feynman diagrams involve Calabi-Yau manifolds, so they will likely need techniques from some of the folks I talked about last week. Once they have four loops, they’ll want to go to five, since that is the level of precision you need to learn something about the material in neutron stars. The talk covered a variety of other developments, some of which were talked about later on Thursday and some of which were only mentioned here.

Of that day’s other speakers, Stefano De Angelis, Lucile Cangemi, Mikhail Ivanov, and Alessandra Buonanno also focused on gravitational waves. De Angelis talked about the subtleties that show up when you try to calculate gravitational waveforms directly with amplitudes methods, showcasing various improvements to the pipeline there. Cangemi talked about a recurring question with its own list of subtleties, namely how the Kerr metric for spinning black holes emerges from the math of amplitudes of spinning particles. Gravitational waves were the focus of only the second half of Ivanov’s talk, where he talked about how amplitudes methods can clear up some of the subtler effects people try to take into account. The first half was about another gravitational application, that of using amplitudes methods to compute the correlations of galaxy structures in the sky, a field where it looks like a lot of progress can be made. Finally, Buonanno gave the kind of talk she’s given a few times at these conferences, a talk that puts these methods in context, explaining how amplitudes results are packaged with other types of calculations into the Effective-One-Body framework which then is more directly used at LIGO. This year’s talk went into more detail about what the predictions are actually used for, which I appreciated. I hadn’t realized that there have been a handful of black hole collisions discovered by other groups from LIGO’s data, a win for open science! Her slides had a nice diagram explaining what data from the gravitational wave is used to infer what black hole properties, quite a bit more organized than the statistical template-matching I was imagining. She explained the logic behind Bern’s statement that gravitational wave telescopes will need two more orders of magnitude, pointing out that that kind of precision is necessary to be sure that something that might appear to be a deviation from Einstein’s theory of gravity is not actually a subtle effect of known physics. Her method typically is adjusted to fit numerical simulations, but she shows that even without that adjustment they now fit the numerics quite well, thanks in part to contributions from amplitudes calculations.

Of the other talks that day, David Kosower’s was the only one that didn’t explicitly involve gravity. Instead, his talk focused on a more general question, namely how to find a well-defined basis of integrals for Feynman diagrams, which turns out to involve some rather subtle mathematics and geometry. This is a topic that my former boss Jake Bourjaily worked on in a different context for some time, and I’m curious whether there is any connection between the two approaches. Oliver Schlotterer gave the day’s second review talk, once again of the “actually a review” kind, covering a variety of recent developments in string theory amplitudes. These include some new pictures of how string theory amplitudes that correspond to Yang-Mills theories “square” to amplitudes involving gravity at higher loops and progress towards going past two loops, the current state of the art for most string amplitude calculations. (For the experts: this does not involve taking the final integral over the moduli space, which is still a big unsolved problem.) He also talked about progress by Sebastian Mizera and collaborators in understanding how the integrals that show up in string theory make sense in the complex plane. This is a problem that people had mostly managed to avoid dealing with because of certain simplifications in the calculations people typically did (no moduli space integration, expansion in the string length), but taking things seriously means confronting it, and Mizera and collaborators found a novel solution to the problem that has already passed a lot of checks. Finally, Tobias Hansen’s talk also related to string theory, specifically in anti-de-Sitter space, where the duality between string theory and N=4 super Yang-Mills lets him and his collaborators do Yang-Mills calculations and see markedly stringy-looking behavior.

Friday began with Kevin Costello, whose not-really-a-review talk dealt with his work with Natalie Paquette showing that one can use an exactly-solvable system to learn something about QCD. This only works for certain rather specific combinations of particles: for example, in order to have three colors of quarks, they need to do the calculation for nine flavors. Still, they managed to do a calculation with this method that had not previously been done with more traditional means, and to me it’s impressive that anything like this works for a theory without supersymmetry. Mina Himwich and Diksha Jain both had talks related to a topic of current interest, “celestial” conformal field theory, a picture that tries to apply ideas from holography in which a theory on the boundary of a space fully describes the interior, to the “boundary” of flat space, infinitely far away. Himwich talked about a symmetry observed in that research program, and how that symmetry can be seen using more normal methods, which also lead to some suggestions of how the idea might be generalized. Jain likewise covered a different approach, one in which one sets artificial boundaries in flat space and sees what happens when those boundaries move.

Yifei He described progress in the modern S-matrix bootstrap approach. Previously, this approach had gotten quite general constraints on amplitudes. She tries to do something more specific, and predict the S-matrix for scattering of pions in the real world. By imposing compatibility with knowledge from low energies and high energies, she was able to find a much more restricted space of consistent S-matrices, and these turn out to actually match pretty well to experimental results. Mathieu Giroux addresses an important question for a variety of parts of amplitudes research, how to predict the singularities of Feynman diagrams. He explored a recursive approach to solving Landau’s equations for these singularities, one which seems impressively powerful, in one case being able to find a solution that in text form is approximately the length of Harry Potter. Finally, Juan Maldacena closed the conference by talking about some progress he’s made towards an old idea, that of defining M theory in terms of a theory involving actual matrices. This is a very challenging thing to do, but he is at least able to tackle the simplest possible case, involving correlations between three observations. This had a known answer, so his work serves mostly as a confirmation that the original idea makes sense at at least this level.

Leave a comment! If it's your first time, it will go into moderation.