Monthly Archives: August 2016

So You Want to Prove String Theory (Or: Nima Did Something Cool Again)

Nima Arkani-Hamed, of Amplituhedron fame, has been making noises recently about proving string theory.

Now, I can already hear the smartarses in the comments correcting me here. You can’t prove a scientific theory, you can only provide evidence for it.

Well, in this case I don’t mean “provide evidence”. (Direct evidence for string theory is quite unlikely at the moment given the high energies at which it becomes relevant and large number of consistent solutions, but an indirect approach might yet work.) I actually mean “prove”.

See, there are two ways to think about the problem of quantum gravity. One is as an experimental problem: at high enough energies for quantum gravity to be relevant, what actually happens? Since it’s going to be a very long time before we can probe those energies, though, in practice we instead have a technical problem: can we write down a theory that looks like gravity in familiar situations, while avoiding the pesky infinities that come with naive attempts at quantum gravity?

If you can prove that string theory is the only theory that does that, then you’ve proven string theory. If you can prove that string theory is the only theory that does that [with certain conditions] then you’ve proven string theory [with certain conditions].

That, in broad terms, is what Nima has been edging towards. At this year’s Strings conference, he unveiled some progress towards that goal. And since I just recently got around to watching his talk, you get to hear my take on it.

 Nima has been working with Yu-tin Huang, an amplitudeologist who tends to show up everywhere, and one of his students. Working in parallel, an all-star cast has been doing a similar calculation for Yang-Mills theory. The Yang-Mills story is cool, and probably worth a post in its own right, but I think you guys are more interested in the quantum gravity one.

What is Nima doing here?

Nima is looking at scattering amplitudes, probabilities for particles to scatter off of each other. In this case, the particles are gravitons, the particle form of gravitational waves.

Normally, the problems with quantum gravity show up when your scattering amplitudes have loops. Here, Nima is looking at amplitudes without loops, the most important contributions when the force in question is weak (the “weakly coupled” in Nima’s title).

Even for these amplitudes you can gain insight into quantum gravity by seeing what happens at high energies (the “UV” in the title). String amplitudes have nice behavior at high energies, naive gravity amplitudes do not. The question then becomes, are there other amplitudes that preserve this nice behavior, while still obeying the rules of physics? Or is string theory truly unique, the only theory that can do this?

The team that asked a similar question about Yang-Mills theory found that string theory was unique, that every theory that obeyed their conditions was in some sense “stringy”. That makes it even more surprising that, for quantum gravity, the answer was no: the string theory amplitude is not unique. In fact, Nima and his collaborators found an infinite set of amplitudes that met their conditions, related by a parameter they could vary freely.

What are these other amplitudes, then?

Nima thinks they can’t be part of a consistent theory, and he’s probably right. They have a number of tests they haven’t done: in particular, they’ve only been looking at amplitudes involving two gravitons scattering off each other, but a real theory should have consistent answers for any number of gravitons interacting, and it’s doesn’t look like these “alternate” amplitudes can be generalized to work for that.

That said, at this point it’s still possible that these other amplitudes are part of some sort of sensible theory. And that would be incredibly interesting, because we’ve never seen anything like that before.

There are approaches to quantum gravity besides string theory, sure. But common to all of them is an inability to actually calculate scattering amplitudes. If there really were a theory that generated these “alternate” amplitudes, it wouldn’t correspond to any existing quantum gravity proposal.

(Incidentally, this is also why this sort of “proof” of string theory might not convince everyone. Non-string quantum gravity approaches tend to talk about things fairly far removed from scattering amplitudes, so some would see this kind of thing as apples and oranges.)

I’d be fascinated to see where this goes. Either we have a new set of gravity scattering amplitudes to work with, or string theory turns out to be unique in a more rigorous and specific way than we’ve previously known. No matter what, something interesting is going to happen.

After the talk David Gross drew on his experience of the origin of string theory to question whether this work is just retreading the path to an old dead end. String theory arose from an attempt to find a scattering amplitude with nice properties, but it was only by understanding this amplitude physically in terms of vibrating strings that it was able to make real progress.

I generally agree with Nima’s answer, but to re-frame it in my own words: in the amplitudes sub-field, there’s something of a cycle. We try to impose general rules, until by using those rules we have a new calculation technique. We then do a bunch of calculations with the new technique. Finally, we look at the results of those calculations, try to find new general rules, and start the cycle again.

String theory is the result of people applying general rules to scattering amplitudes and learning enough to discover not just a new calculation technique, but a new physical theory. Now, we’ve done quite a lot of string theory calculations, and quite a lot more quantum field theory calculations as well. We have a lot of “data”.

And when you have a lot of data, it becomes much more productive to look for patterns. Now, if we start trying to apply general rules, we have a much better idea of what we’re looking for. This lets us get a lot further than people did the first time through the cycle. It’s what let Nima find the Amplituhedron, and it’s something Yu-tin has a pretty good track record of as well.

So in general, I’m optimistic. As a community, we’re poised to find out some very interesting things about what gravity scattering amplitudes can look like. Maybe, we’ll even prove string theory. [With certain conditions, of course. 😉 ]

Science Is a Collection of Projects, Not a Collection of Beliefs

Read a textbook, and you’ll be confronted by a set of beliefs about the world.

(If it’s a half-decent textbook, it will give justifications for those beliefs, and they will be true, putting you well on the way to knowledge.)

The same is true of most science popularization. In either case, you’ll be instructed that a certain set of statements about the world (or about math, or anything else) are true.

If most of your experience with science comes from popularizations and textbooks, you might think that all of science is like this. In particular, you might think of scientific controversies as matters of contrasting beliefs. Some scientists “believe in” supersymmetry, some don’t. Some “believe in” string theory, some don’t. Some “believe in” a multiverse, some don’t.

In practice, though, only settled science takes the form of beliefs. The rest, science as it is actually practiced, is better understood as a collection of projects.

Scientists spend most of their time working on projects. (Well, or procrastinating in my case.) Those projects, not our beliefs about the world, are how we influence other scientists, because projects build off each other. Any time we successfully do a calculation or make a measurement, we’re opening up new calculations and measurements for others to do. We all need to keep working and publishing, so anything that gives people something concrete to do is going to be influential.

The beliefs that matter come later. They come once projects have been so successful, and so widespread, that their success itself is evidence for beliefs. They’re the beliefs that serve as foundational assumptions for future projects. If you’re going to worry that some scientists are behaving unscientifically, these are the sorts of beliefs you want to worry about. Even then, things are often constrained by viable projects: in many fields, you can’t have a textbook without problem sets.

Far too many people seem to miss this distinction. I’ve seen philosophers focus on scientists’ public statements instead of their projects when trying to understand the implications of their science. I’ve seen bloggers and journalists who mostly describe conflicts of beliefs, what scientists expect and hope to be true rather than what they actually work on.

Do scientists have beliefs about controversial topics? Absolutely. Do those beliefs influence what they work on? Sure. But only so far as there’s actually something there to work on.

That’s why you see quite a few high-profile physicists endorsing some form of multiverse, but barely any actual journal articles about it. The belief in a multiverse may or may not be true, but regardless, there just isn’t much that one can do with the idea right now, and it’s what scientists are doing, not what they believe, that constitutes the health of science.

Different fields seem to understand this to different extents. I’m reminded of a story I heard in grad school, of two dueling psychologists. One of them believed that conversation was inherently cooperative, and showed that, unless unusually stressed or busy, people would put in the effort to understand the other person’s perspective. The other believed that conversation was inherently egocentric, and showed that, the more you stressed or busy people are, the more they assume that everyone else has the same perspective they do.

Strip off the “beliefs”, and these two worked on the exact same thing, with the same results. With their beliefs included, though, they were bitter rivals who bristled if their grad students so much as mentioned the other scientist.

We need to avoid this kind of mistake. The skills we have, the kind of work we do, these are important, these are part of science. The way we talk about it to reporters, the ideas we champion when we debate, those are sidelines. They have some influence, dragging people one way or another. But they’re not what science is, because on the front lines, science is about projects, not beliefs.

Physics Is about Legos

There’s a summer camp going on at Waterloo’s Institute for Quantum Computing called QCSYS, the Quantum Cryptography School for Young Students. A lot of these kids are interested in physics in general, not just quantum computing, so they give them a tour of Perimeter. While they’re here, they get a talk from a local postdoc, and this year that postdoc was me.

There’s an image that Perimeter has tossed around a lot recently, All Known Physics in One Equation. This article has an example from a talk given by Neil Turok. I thought it would be fun to explain that equation in terms a (bright, recently taught about quantum mechanics) high school student could understand. To do that, I’d have to explain what the equation is made of: spinors and vectors and tensors and the like.

The last time I had to explain that kind of thing here, I used a video game metaphor. For this talk, I came up with a better metaphor: legos.

Vectors are legos. Spinors are legos. Tensors are legos. They’re legos because they can be connected up together, but only in certain ways. Their “bumps” have to line up properly. And their nature as legos determines what you can build with them.

If you’re interested, here’s my presentation. Experts be warned: there’s a handwaving warning early in this talk, and it applies to a lot of it. In particular, the discussion of gauge group indices leaves out a lot. My goal in this talk was to give a vague idea of what the Standard Model Lagrangian is “made of”, and from the questions I got I think I succeeded.

The Metaphysics of Card Games

I tend to be skeptical of attempts to apply metaphysics to physics. In particular, I get leery when someone tries to describe physics in terms of which fundamental things exist, and which things are made up of other things.

Now, I’m not the sort of physicist who thinks metaphysics is useless in general. I’ve seen some impressive uses of supervenience, for example.

But I think that, in physics, talk of “things” is almost always premature. As physicists, we describe the world mathematically. It’s the most precise way we have access to of describing the universe. The trouble is, slightly different mathematics can imply the existence of vastly different “things”.

To give a slightly unusual example, let’s talk about card games.

magic_the_gathering-card_back

To defeat metaphysics, we must best it at a children’s card game!

Magic: The Gathering is a collectible card game in which players play powerful spellcasters who fight by casting spells and summoning creatures. Those spells and creatures are represented by cards.

If you wanted to find which “things” exist in Magic: The Gathering, you’d probably start with the cards. And indeed, cards are pretty good candidates for fundamental “things”. As a player, you have a hand of cards, a discard pile (“graveyard”) and a deck (“library”), and all of these are indeed filled with cards.

However, not every “thing” in the game is a card. That’s because the game is in some sense limited: it needs to represent a broad set of concepts while still using physical, purchasable cards.

Suppose you have a card that represents a general. Every turn, the general recruits a soldier. You could represent the soldiers with actual cards, but they’d have to come from somewhere, and over many turns you might quickly run out.

Instead, Magic represents these soldiers with “tokens”. A token is not a card: you can’t shuffle a token into your deck or return it to your hand, and if you try to it just ceases to exist. But otherwise, the tokens behave just like other creatures: they’re both the same type of “thing”, something Magic calls a “permanent”. Permanents live in an area between players called the “battlefield”.

And it gets even more complicated! Some creatures have special abilities. When those abilities are activated, they’re treated like spells in many ways: you can cast spells in response, and even counter them with the right cards. However, they’re not spells, because they’re not cards: like tokens, you can’t shuffle them into your deck. Instead, both they and spells that have just been cast live in another area, the “stack”.

So while Magic might look like it just has one type of “thing”, cards, in fact it has three: cards, permanents, and objects on the stack.

We can contrast this with another card game, Hearthstone.

hearthstone_screenshot

Hearthstone is much like Magic. You are a spellcaster, you cast spells, you summon creatures, and those spells and creatures are represented by cards.

The difference is, Hearthstone is purely electronic. You can’t go out and buy the cards in a store, they’re simulated in the online game. And this means that Hearthstone’s metaphysics can be a whole lot simpler.

In Hearthstone, if you have a general who recruits a soldier every turn, the soldiers can be cards just like the general. You can return them to your hand, or shuffle them into your deck, just like a normal card. Your computer can keep track of them, and make sure they go away properly at the end of the game.

This means that Hearthstone doesn’t need a concept of “permanents”: everything on its “battlefield” is just a card, which can have some strange consequences. If you return a creature to your hand, and you have room, it will just go there. But if your hand is full, and the creature has nowhere to go, it will “die”, in exactly the same way it would have died in the game if another creature killed it. From the game’s perspective, the creature was always a card, and the card “died”, so the creature died.

These small differences in implementation, in the “mathematics” of the game, change the metaphysics completely. Magic has three types of “things”, Hearthstone has only one.

And card games are a special case, because in some sense they’re built to make metaphysics easy. Cards are intuitive, everyday objects, and both Magic and Hearthstone are built off of our intuitions about them, which is why I can talk about “things” in either game.

Physics doesn’t have to be built that way. Physics is meant to capture our observations, and help us make predictions. It doesn’t have to sort itself neatly into “things”. Even if it does, I hope I’ve convinced you that small changes in physics could lead to large changes in which “things” exist. Unless you’re convinced that you understand the physics of something completely, you might want to skip the metaphysics. A minor mathematical detail could sweep it all away.